• Title/Summary/Keyword: Hydraulic power system

Search Result 814, Processing Time 0.026 seconds

발전소 배관지지용 유압완충기 개발

  • 박태조;구칠효;조광환;이동렬;이현;김연환
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF

PWM 제어 고속 온-오프 전자밸브에서 발생하는 압력맥동 저감 (Pressure Ripple Reduction in High Speed On-Off Solenoid Valves Driven by PWM Control)

  • 김도태;이상권
    • 유공압시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.8-13
    • /
    • 2005
  • This paper investigates a fast, accurate and inexpensive hydraulic motor speed control system using high speed on-off solenoid valves. In order to retain the advantages of the two position valve and obtain better performance, the valves are operated by pulse width modulation(PWM) control. PWM signal is generated from a LabWIEW program in microcomputer in order to set up various duty ratio and frequency of carrier wave in PWM signal with varying system parameters. As the results of experiments, the speed control of a hydraulic motor was successfully implemented using on-off solenoid valves. In order to attenuate the pressure ripple and speed variation due to discontinuously controlled flow through the on-off valves, a resonator hose fabricated for automobile power steering system was connected between the valve and a hydraulic motor. From experimental results obtained in the hydraulic motor system with a resonator hose, it was ascertained that the resonator hose showed excellent performances in reducing pressure ripple and motor speed variation.

  • PDF

압력예측기법과 직접순시토크제어기법을 통한 유압펌프용 SRM의 압력제어구동 (Pressure Control of Hydraulic Pump using SR Drive with Pressure Predict and Direct Torque Control Method)

  • 이동희;석승훈;양가령;안진우
    • 전력전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.171-178
    • /
    • 2008
  • 본 논문에서는 압력예측기법과 직접 순시토크 제어기법을 통한 유압펌프용 SRM의 압력제어 구동시스템을 제안하였다. 일반적으로 유압 펌프 시스템은 유압센서의 응답성으로 인하여 제어시스템의 시지연이 비교적 길어지게 되며, 이러한 시간지연은 PI 또는 PID 제어 구조에서 장시간의 진동과 불안정화를 만들기 쉽다. 본 논문에서는 시간 지연문제를 해결하고 리플이 없는 압력제어를 위하여 스미스 예측기(simth predictor)를 통한 지연보상과 직접 순시토크제어기법(Direct Instantaneous Torque, 이하 DITC)을 적용하였다. 제안된 제어 방식은 펌프와 센서간의 기구적 문제에 의한 지연문제 해결과 안정성을 확보하고, 펌프 압력제어의 동특성을 향상시키며 전류(轉流, commutation) 구간에서 균일한 토크를 발생시켜 토크 리플을 억제하기 위함이다. 제안된 제어방식은 시뮬레이션과 실험을 통하여 효용성을 검증하였다.

선박용 배관 시스템의 수력학적 설계 및 해석 프로그램 개발 (A Development of Computing System for Hydraulic Design and Analysis of Ship-building Piping System)

  • 정희택;정양범;조재우;배진수
    • 동력기계공학회지
    • /
    • 제5권1호
    • /
    • pp.57-63
    • /
    • 2001
  • In the present study, an interactive mode of the computing system has been developed for the hydraulic analysis of the circulating waters in the industrial pipings. The system consists of three separated modules, which are linked together with common graphical user interfaces. Application to the design of the cooling sea-water system for the ships was demonstrated to be very reliable and practical in support of design activities.

  • PDF

충격압력을 이용한 고압용 유압호스 조립체의 수명분석 (Life Analysis of High Pressure Hydraulic Hose Assemblies by Impulse Test)

  • 이용범;김형의;유영철;박종호;고재명
    • 유공압시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The failures such as leakage and burst stemmed from the repetitive motions of bending and stretching of the assembly of hydraulic hose in construction machines, agriculture machines, vehicles, and industrial heavy machines can induce big troubles. Therefore, the hydraulic hose itself eventually requires an estimation of life to operate the hydraulic system safely. In this research, we have qualitatively selected the efficient test items by the analysis of the life and potential failures of hydraulic hose. We have used more than seven of hydraulic hoses simultaneously for the research. We have applied impulse pressure and half omega flexing motions to the accelerated life testing Test results have been expressed by employing weibull plot.

  • PDF

압력·온도 변화에 따른 초고압 발생기 성능특성 연구 (A Study of the Variation in Intensifier Performance Characteristics Varying with Pressure and Temperature)

  • 김형의;이기천;김재훈
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1249-1255
    • /
    • 2010
  • 초고압 시스템은 유압동력 발생장치, 충격압력 발생장치, 초고압부 오일 보충장치, 기동 및 제어반 등으로 일반적으로 구성된다. 유압동력 발생장치는 초고압 발생기에 유압원을 공급하고, 초고압 발생기에서는 공급되어진 유압원을 이용하여 초고압으로 압력을 증폭한다. 기동 및 제어반에서는 시스템을 운전하기 위한 전기모터, 밸브, 센서 등에 대한 제어 및 관찰을 하기 위해 사용된다. 본 연구에서는 초고압 압력을 발생시키기 위한 제어 방법을 서보밸브를 사용한 유량제어 방식에서 비례 릴리프 밸브를 사용한 압력제어 방법을 사용하여 연구하며, 초고압 압력 발생기의 압력을 가하는 주기와 유압동력 발생장치의 작동유의 온도 변화에 따라 충격압력을 발생시키는 성능이 변화하는 특성을 연구하는 것을 목적으로 한다.

Automatic Assembly Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators

  • Kyoungkwan Ahn;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1633-1642
    • /
    • 2002
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of the typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (linear vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN is generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

동력 조향계 최적화에 의한 연비 개선 (Fuel Consuming Reduction by Power Steering System Optimization)

  • 조석현;남경우;권오성
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.119-124
    • /
    • 2006
  • This paper deals with energy-saving effort in the hydraulic power steering system. Commonly, the hydraulic power steering systems are used for passenger cars and the reduction of pumping loss under non-steering condition is important to improve fuel economy. Experiments and simulations are performed simultaneously to examine the main factors to reduce the pumping loss-pressure loss and flow rate of the power steering systems. Fuel economy effect of the optimal design of power steering system is verified by vehicle test - more than 1% fuel consuming reduction is attained.

컴플렉스법에 의한 유압시스템의 최적 설계 (Optimal Design of Hydraulic System Using the Complex Method)

  • 이성래;이용범;박종호
    • 유공압시스템학회논문집
    • /
    • 제1권4호
    • /
    • pp.1-8
    • /
    • 2004
  • The optimum design parameters of several hydraulic systems are obtained using the complex method that is one kind of constrained direct search method. First, the parameters of lead-lag controller of the direct drive servovalve is designed using the complex method to satisfy the steady-state error requirement. Second, the optimum locating point of hydraulic cylinder Is determined to minimize the cylinder force in the operation range of rotational sluice gate. For the third application case, the optimum piston area of hydraulic cylinder is determined to minimize the man power to elevate the manually operated sluice gate.

  • PDF