• Title/Summary/Keyword: Hydraulic equipment

Search Result 590, Processing Time 0.028 seconds

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

A Study on the Problem of Pressure and Flow Rate by Prescriptive Code Based Design of Fire Sprinkler System (사양위주 스프링클러설비 설계의 압력과 유량의 문제점에 대한 고찰)

  • Jeong, Keesin;Kim, Wee-Kyong
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.14-19
    • /
    • 2013
  • National Fire Safety Code 103 regulates that all operating sprinkler in design area must be discharged 1 bar or more pressure and release 80 lpm or more flow rate as minimum criteria. NFSC103 also provides that the number of operating sprinkler in design area is 10, 20, 30 according to the building classification and the total flow rate is 800, 1,600, 2,400 lpm depending on 80 lpm per sprinkler. If sprinkler system is designed as above provisions, the pressure and the flow rate accordingly become smaller than the minimum criteria about 50 % sprinklers. It results in serious consequence that the purpose of sprinkler system as initial fire reaction equipment is failure. In order to solve these problems, It is desirable that Performance-based fire protection design, hydraulic calculation, is carried out to all sprinkler system.

Risk-based Design of On-board Facility for Lifting System Field Test of Deep-sea Mining System (심해저 광물자원 양광시스템 실증 시험을 위한 위험도 기반 선상 설비 설계)

  • Cho, Su-gil;Park, Sanghyun;Oh, Jaewon;Min, Cheonhong;Kim, Seongsoon;Kim, Hyung-Woo;Yeu, Tae Kyung;Jung, Jung Yeul;Bae, Jaeil;Hong, Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.526-534
    • /
    • 2016
  • This study had the goal of designing onboard structures for a pre-pilot mining test (PPMT), which is required for the commercialization of the deep-sea mining industry. This PPMT is planned to validate the performance of a hydraulic lifting system and verify the concept of operating through a moon-pool in the east sea, Korea. All of the onboard equipment and facility were designed by KRISO. Because the test was performed at the first development, it is difficult to determine what risk will occur in the facility. Therefore, risk-based design is required in the facility for the PPMT, which includes the facility layout, failure mode and effect analysis (FMEA), and risk reduction plan. All of the expected performances of the lifting system itself and the onboard facilities were qualitatively validated using the risk-based design.

Dynamic Characteristics of Ducted Fan: A Study (덕트 팬의 동특성 연구)

  • Baek, Sang Min;Kwon, Jae Ryong;Rhee, Wook
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.84-91
    • /
    • 2017
  • The dynamic characteristics of a ducted fan in hovering condition were investigated. The section properties of the fan blade were calculated, and a simulation model was developed according to the rotor system components. Dynamic analyses were conducted relative to the rotational speed and the collective pitch. The proposed ducted fan system showed less aero-elastic instability within the designated operating ranges. To verify the analytical approach, a rotating test stand of the ducted fan was set up. A functional test of the assembly was carried out to determine the kinematics and interference between components. The non-rotating and rotating normal frequencies were measured by excitation of the collective pitch using hydraulic actuators. The results indicated a correlation between the test equipment and the simulation model.

Rolling Contact Fatigue Behavior and Microstructure Control to Medium Carbon Steel Base Hot Forgings (중탄소계 열간단조품의 미세조직과 구름피로거동)

  • Lee J. S.;Son C. H.;Moon H. K.;Song B. H.;Park C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.287-290
    • /
    • 2005
  • Once hot forgings for automotive parts such as wheel bearing flange to which cyclic asymmetric bending stress is continuously applied are produced, it is necessary to control their microstructure to obtain superior mechanical properties. It is however hard to control the microstructure uniformly because the strength is reduced as coarsening of ferrite grains. To investigate the microstructural alteration according to process variables during hot working, the variation of the ferrite grain size was studied by utilizing of the computer aided servo-hydraulic Gleeble tester which is hot deformation behavior reproduction equipment. In addition, the effect of the ferrite grain size of raw material on the austenite grain behavior of hot forgings was also examined. The rolling contact fatigue resistance of the induction hardened SAE 1055 steel was compared with the occasion of the same condition of SAE52100 bearing steel. As a result, it was confirmed that the ferrite grain sizes of the forgings depend on the heating temperature and cooling start temperature during hot forging and cooling processes. The induction hardened SAE1055 steel showed a superior rolling contact fatigue resistance to the induction hardened SAE52100 steel. The reason is that SAE1055 steel is freer from the material defect such as segregation than the comparative steel.

  • PDF

Estimation of Scour Depth at Bridnges and Comparative Analysis between Estimated and Measured Scour Depths (교량에서의 세굴깊이 산정 및 산정치와 실측치의 비교분석)

  • Yun, Yong-Nam;Lee, Jae-Su;Ho, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.477-485
    • /
    • 1997
  • Recent internal and external bridge failures due to pier and abutment scour have emphasized the need for better methods of scour depth estimation. This paper compares the hydraulic analysis of the Namhan River Bridge over the Namhan River using one-dimensional models. WSPRO & HEC-2, and the two-dimensional model. TABS-MD based on the procedures presented in HEC-18 published by the U.S. FEdral Highway Administration. A comparison of estimated scour depth for this research based on the results from both one-dimensional and two-dimensional model is presented. At the same time, field measurement has been performed before and after flood using sounding instrument. Fathometer (DE-719C). A comparison between estimated and measured scour depth at bridge is also presented. Result shows that there is all the difference between estimated and measured scour depth due to dissimilarity between laboratory and field conditions. Also, it is difficult to measure the maximum scour depth accurately due to refilling. Therefore development of scour measuring equipment which can be used during peak flood, and derivation of empirical model appropriate for internal river system seems urgent.

  • PDF

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Development of the 80-kW Test Tractor for Load Measurement of Agricultural Operations (농작업 부하 계측을 위한 80kW급 계측 트랙터 개발 및 검증)

  • Cho, Seung-Je;Kim, Jeong-Gil;Park, Jin-Sun;Kim, Yeon-Soo;Lee, Dongkeun
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.46-53
    • /
    • 2022
  • RIn this study, a test tractor that could measure various types of agricultural operational loads was developed, and its performance was verified. This tractor could be used to measure the load generated during agricultural work and convert the related data into a database. A test tractor was developed using an 80-kW-rated load tractor, and it could measure various types of field test data, such as engine torque and rpm, wheel torque, PTO(power take-off) torque, hexometer, IMU/INS sensor, steering angle sensor, hydraulic pressure, and flow sensor data. To verify the developed test tractor, a verification test using an agriculture rotavator was performed. The test conditions were L1, L2, and L3 based on the tractor's main and sub-transmission stages, and stages 1 and 2 were selected as the PTO. In a comparison of the analyzed test data, similar tendencies in the test results of this research and other research (Kim's research) were seen. Through this, the developed test tractor was verified. In the future, we plan to conduct research on the tractor developed in this study using various attached working machines.

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.