• 제목/요약/키워드: Hydraulic bulge test

검색결과 9건 처리시간 0.02초

유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보) (Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test)

  • 김영석;김진재
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.718-725
    • /
    • 2016
  • 본 논문에서는 대형 선박의 판형 열교환기 등에 널리 이용되고 있는 순 티타늄 판재의 소성변형을 유한요소해석하기 위한 기초 데이터로서 순 티타늄 판재의 유동곡선을 평가하였다. 순 티타늄 판재의 프레스 가공 시에 판재에는 국부적으로 큰 소성변형이 발생하고 있다. 그러나 기존의 단축 인장실험에서 얻을 수 있는 소성변형률이 낮아서 티타늄 판재의 가공공정 설계를 위한 유한요소해석의 정밀도를 떨어뜨리는 경우가 있다. 본 연구에서는 큰 소성변형률 까지 안정적으로 성형이 가능한 유압벌지실험을 수행하여 재료의 소성변형에서 가공경화특성을 나타내는 유동곡선으로써 진응력-진변형률 선도를 구하였고 그 결과를 인장실험 결과와 비교하였다. 순 티타늄 판재의 유압벌지실험에서 재료의 변형률은 3D 디지털 영상상관법을 이용한 ARAMIS 시스템으로 실시간 측정된다. 이 유압벌지실험으로부터는 소성 변형률이 0.65 이상 까지도 안정적으로 재료의 소성유동곡선을 얻을 수 있었으며 그 결과는 Kim-Tuan 이 문헌 17[Y.S. Kim, J.H. In, Korean Acadmia-Ind. Coop. Soc.,(be in print), 2016] 의 연구에서 제안한 가공경화식으로 잘 핏팅됨을 알 수 있었다.

유한요소법에 의한 타원 판넬의 성형성에 관한 연구 (A Study on the Formability of Ellipse Panel by Finite Element Method)

  • 강대민
    • 동력기계공학회지
    • /
    • 제3권2호
    • /
    • pp.89-97
    • /
    • 1999
  • In this paper the forming simulations of ellipse bulge have been researched by using $PAM-STAMP_{TM}$ to estimate the sheet metal forming and the plastic deformation characteristic of ellipse bulge. Thin elliptical diaphragms of brass, copper, aluminum, and mild steel are bulged in elliptical dies having aspect ratios of 1.33 and 2. In order to compare the simulation results with the experiment and ellipse bulge's theory derived by using Johnson and Duncan's theory, the relations of hydraulic pressure and polar height, polar thickness strain and polar height, were compared. According to this study, the results of simulation and ellipse bulge's theory derived by using Johnson and Duncan's theory, and the bursting pressure and the bursting polar height are good agreement to the experiment. So, the results of simulation by using $PAM-STAMP_{TM}$ and the ellipse bulge's theory will give engineers good information to make assessment the formability and plastic deformation characteristic of hydraulic ellipse bulge test.

  • PDF

PAM-STAMP를 이용한 박판성형성 및 소성변형 특성에 관한 연구 (A Study on the Sheet Metal Forming and the Plastic Deformation Characteristic by Using PAM-STAMP)

  • 강대민
    • 한국해양공학회지
    • /
    • 제13권1호통권31호
    • /
    • pp.29-38
    • /
    • 1999
  • In this paper the forming simulation of circular bulge by using PAM-STAMP has been performed to estimate the sheet metal forning and the plastic deformation characteristic of circular bulge. The uniaxial tension tests adn bulge tests are carried out for studying the forming characteristics of materials, and also Moire experiment are carried out for measuring the radius of curvature of the bulge and the polar compressive thickness strain. In order to compare the simulation results with the experiment and Hills theory, the relationships between redius of curvature adn polar height of the bulge, between hydraulic pressure and polar height, and between polar compressive thickness strain and polar height, are used. According to this study, the results of simulation and Hills theory are good agreement to the experiment. So, the results of simulation by using PAM-STAMP and Hills theory will give engineers good information to assess the formagbility and plastic deformation characteristic of hydraulic circular bulge test.

  • PDF

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

변형율속도가 판재의 불안정에 미치는 영향 (The effect of strain rate on the instability of sheet metal)

  • 백남주;한규택
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.935-943
    • /
    • 1988
  • 본 연구에서는 유압벌지시험기를 이용한 저속 벌지시험과 낙하해머(drop hammer)를 응용한 충격벌지시험기를 제작, 사용하여 충격벌지시험을 하여 저속변형과 충격변형에서 판재금속의 성형한계선도를 구하고 변형율속도가 판재의 불안정 및 성형 성에 미치는 영향을 조사하고 다이의 형상비(단축/장축)를 0.5, 0.75, 1.0 등으로 달 리하여 실험하므로써 변형경로에 따른 한계변형율의 변화를 관찰하고 아울러 기존의 성형한계이론과 비교, 검토하였다.

축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션 (Finite Element Simulation of Axisymmetric Tube Hydroforming Processes)

  • 김용석;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.58-61
    • /
    • 2001
  • An implicit finite element formulation for axisymmetric tube hydroforming is investigated. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and frictionless contact between tube and fluid are considered using the mesh-normal vector computed from finite element mesh of the tube. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and simulation results are compared with experimental measurements. In the axisymmetric tube hydroforming process, an optimal hydraulic curve is pursued by performing the simulation with various internal pressures and axial forces.

  • PDF

판재의 이축인장 특성을 고려한 사각컵 딥드로잉 성형해석 (Numerical Study of Square Cup Deep Drawing Accounting for Biaxial Tensile Property)

  • 안덕찬;김광육
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.213-214
    • /
    • 2009
  • Recently the use of ferritic stainless steels for automotive exhaust system has been increased dramatically. A detailed knowledge of material behavior of ferritic stainless steel is important for successful manufacturing of exhaust systems. To achieve this goal, numerical study of square cup deep drawing for ferritic stainless steel sheet, type 409L was conducted with Yld2000-24. Uniaxial tensile test and hydraulic bulge test were performed to characterize plastic material behavior. Finite element simulation of square cup deep drawing was performed successfully.

  • PDF

축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션 (Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes)

  • 구본영;김용석;금영탁
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션 (Finite Element Simulation of Axisymmeric Tube Hydroforming Processes)

  • 김용석;금영탁
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.