• 제목/요약/키워드: Hydraulic analysis model

검색결과 1,137건 처리시간 0.022초

단순회귀분석에 의한 배수성 아스팔트의 투수계수 산정모델 제안 (Proposal for the Estimation of the Hydraulic Conductivity of Porous Asphalt Concrete Pavement using Regression Analysis)

  • 장영선;김도완;문성호;장병관
    • 한국도로학회논문집
    • /
    • 제15권3호
    • /
    • pp.45-52
    • /
    • 2013
  • PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.

수리모형실험 및 수치해석을 통한 여수로 수리특성 분석 (Analysis of Hydraulic Characteristics of Spillway using Hydraulic Model Experiments and Numerical Analysis)

  • 이정규;이재홍;김주영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1818-1822
    • /
    • 2008
  • 여수로와 같은 3차원 수리구조물을 설계하고 수리현상을 조사하거나, 형상 및 안정성을 파악하기 위해서는 일반적으로 수리모형실험을 통하여 실제 현상을 모의하는 경우가 많다. 그러나 수리모형실험을 하기 위해서는 많은 시간과 비용 및 공간이 필요하며 실제 수리구조물을 축소시켜 측정하는 것은 대단히 어렵고 표면장력 등이 실험결과에도 상당한 영향을 미칠 수 있으며 다양한 경우의 실험은 현실적으로 불가능하다. 따라서, 수치해석을 통하여 적정한 초기결과를 도출할 필요성이 있으며, 이를 통하여 수리모형실험의 대상을 결정하고 결과를 비교한다면 경제적이고 합리적인 수리구조물의 설계와 평가가 가능하다. 본 연구에서는 최적의 여수로를 설계하기 위하여 월류형 여수로를 대상으로 수치해석을 수행하였고, 수리모형실험에 대한 실험적인 접근을 통하여 수리적 조건을 향상시킬 수 있는 보다 나은 설계안을 제시하였다. 이러한 수리모형실험 계측결과를 통하여 개선된 수리구조물 설계안을 제안하였고, 개선된 설계안에 대한 개선효과를 조사하였다.

  • PDF

수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰 (A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis)

  • 서동일;최한규
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

부등류해석을 이용한 QUAL2E 모형의 개선 (Improvement of QUAL2E Model using Nonuniform Flow Analysis)

  • 김상호;최현상
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1144-1150
    • /
    • 2006
  • Recently, as water pollution accidents in rivers have increased, there is an increased interest in water quality forecast with accurate simulation. QUAL2E model, widely used for water quality analysis, uses the same hydraulic characteristics, such as depth and velocity, in a reach. The flow of the river is changed by various hydraulic constructions or by topography in a real river channel. In this study, a hydraulic connection module is developed to consider flow variations of river channels in QUAL2E model. The module uses the simulations results of non-uniform flow of a 1-D hydraulic model such as DWOPER or HEC-RAS. The improved QUAL2E model with this module was applied to a downstream section of Paldang Dam on the Han River. The results show the variation of water quality very well in a reach where flowing vary abruptly, like the Jamsil submerged weir.

하천폭의 국부적 축소 및 확대에 따른 수리특성 연구 (A Study of the Stream Specific by River Width's Downsizing & Extension)

  • 최한규;김주석;백효선
    • 산업기술연구
    • /
    • 제27권B호
    • /
    • pp.229-233
    • /
    • 2007
  • This research investigated the way of generating the flowing of water in case of artificial fluctuation of river width by the unidimensional numerical analysis in order to reconstruct vertical and expanse features of flowing, and the problem of existing numerical analysis in accordance with local enlargement and reduction of river through hydraulic model experiments with results of numerical analysis. The result revealed that when the local section change in the same river is exist, it showed 0.93m in the case of no change of local section in the hydraulic model experiments and numerical analysis, however, it presented 1.645m on the occasion of local section changes in the hydraulic model experiments and numerical analysis. In other words, there was a significant difference in the existing numerical analysis, when there was a local section change. As a result of the experimental section for the enlargement and reduction of local river width, due to the sensitive change for fluctuation of flood discharge, there was a significant difference between numerical analysis and hydraulic model experiments. In addition, the result of comparison between the enlargement and reduction of local river width confirmed that the result of numerical analysis with hydraulic model experiments showed larger generation of deviation in case of enlargement of section than in case of reduction of section.

  • PDF

하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석 (Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream)

  • 안승섭;임동희;박노삼;곽태화
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

소형 준설선 유압 추진기의 최적 제원 도출 및 성능 검증에 관한 연구 (A Study on Derivation of Optimal Specifications and Verification of Performance of Hydraulic Propulsion Propeller for Small Dredger)

  • 백도선;양경욱
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.43-51
    • /
    • 2021
  • In this study, we designed a hydraulic propulsion propeller system that allows dredged materials to be carried out by the dredger to the disposal place. The proposed model equation was used to formulate the screw propeller specifications considering the resistance to the dredger, and the quantitative specifications of the hydraulic propulsion propeller were determined through the numerical analysis programs. In addition, based on the proposed results, we were able to determine the specifications of the hydraulic system that was used for the hydraulic motor in the propulsion propeller device and then manufactured the hydraulic propulsion propeller. To guarantee the reliability of the proposed model equation, an external testing agency was invited and verified that the hydraulic propulsion propeller based on the proposed model equation could achieve the target speed in the dredger.

선박용 로딩암에 적용할 수 있는 융합해석기술에 관한 연구 (Convergence analysis technology for ship loading arm)

  • 이대희;노대경;이근호;박성수;장주섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.258-268
    • /
    • 2017
  • 본 논문에서는 하나의 해석 소프트웨어(SimulationX)로 로딩암의 유압회로 해석기술과 다물체 동역학 해석기술을 융합시키는 것을 목표로 한다. 움직이는 질량의 회전중심에 변화가 있거나, 중력장에서의 거동을 구현하기 어려운 기존의 유압회로해석기술의 한계성을 극복하고자 하는 연구이다. 연구를 진행하는 순서는 다음과 같다. 먼저 유압회로를 구성하는 부품들의 제원을 해석모델에 반영하여 신뢰성을 확보한다. 신뢰성이 검증된 단품해석모델을 이용하여 유압회로를 모델링하고, 로딩암의 MBS(Multi Body System)모델을 구성한다. 그 후에 유압회로의 해석모델과 MBS모델을 융합하여 회로의 해석결과가 MBS모델에 정확히 반영되는지 확인한다. 이러한 융합해석모델은 시제품이 없어도 대상의 동적거동을 예측 할 수 있으므로 개발비를 절감하는 효과를 가져다준다.

지하수 모델을 이용한 제주도 지하수 유동특성 및 수리전도도 분석 (Analysis of Groundwater Flow Characterstics and Hydraulic Conductivity in Jeju Island Using Groundwater Model)

  • 김민철;양성기
    • 한국환경과학회지
    • /
    • 제28권12호
    • /
    • pp.1157-1169
    • /
    • 2019
  • We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 - 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.

Thermal Influence on Hydraulic Conductivity in Compacted Bentonite: Predictive Modeling Based on the Dry Density-Hydraulic Conductivity Relationship

  • Gi-Jun Lee;Seok Yoon;Won-Jin Cho
    • 방사성폐기물학회지
    • /
    • 제22권1호
    • /
    • pp.17-25
    • /
    • 2024
  • Hydraulic conductivity is a critical design parameter for buffers in high-level radioactive waste repositories. Most employed prediction models for hydraulic conductivity are limited to various types of bentonites, the main material of the buffer, and the associated temperature conditions. This study proposes the utilization of a novel integrated prediction model. The model is derived through theoretical and regression analyses and is applied to all types of compacted bentonites when the relationship between hydraulic conductivity and dry density for each compacted bentonite is known. The proposed model incorporates parameters such as permeability ratio, dynamic viscosity, and temperature coefficient to enable accurate prediction of hydraulic conductivity with temperature. Based on the results obtained, the values are in good agreement with the measured values for the selected bentonites, demonstrating the effectiveness of the proposed model. These results contribute to the analysis of the hydraulic behavior of the buffer with temperature during periods of high-level radioactive waste deposition.