• 제목/요약/키워드: Hydraulic accumulator type

검색결과 11건 처리시간 0.026초

유압 축압기식 제동에너지 회생시스템을 장착한 정유압구동식 차량의 모의시험기 개발 (Development of a Simulator of Vehicle Equipped with Hydrostatic Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System)

  • 이성래
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.119-126
    • /
    • 2003
  • The simulator of a vehicle equipped with hydrostatic transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston, pump plate angle and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

유압 축압기식 제동에너지 희생시스템을 장착한 기계식 변속기 차량의 모의시험기 개발 (Development of a Simulator of Vehicle Equipped with Mechanical Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System)

  • 이성래
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.180-186
    • /
    • 2004
  • The simulator of a vehicle equipped with mechanical transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the shift lever position, the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the shift lever position, the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

벨로스형 어큐뮬레이터의 압력 맥동 감쇠 특성 (Attenuation of Pressure Fluctuations in Oil Hydraulic Pipeline with Bellows Type Accumulator)

  • 이일영;정용길;이수종
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.31-37
    • /
    • 2001
  • Pressure propagation and attenuation characteristics in a hydraulic pipeline with a bellows type accumulator was investigated by theoretical analyses and experiments. In the first stage of the study, equations to evaluate the amount of oil volume charged into the bellows together with nitrogen gas were proposed. In the next stage, the authors suggested a mathematical model based on transfer matrix method to describe the dynamic characteristics of the pipe element with a metal bellows type accumulator. Through comparisons and considerations of the experimental and the numerical data shown in frequency domain, the validity of the mathematical model was confirmed.

  • PDF

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도 (Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System)

  • 김동윤;홍예선;박영필
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF

유압식 에너지 회생시스템의 성능평가 (Performance Evaluation for Hydraulic Type Energy Regenerative System)

  • 정동수;김형의;강이석
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.136-144
    • /
    • 2006
  • Vehicles usually have 3 types of speed pattern like acceleration, travel, and deceleration. It requires much driving energy from engine while accelerating, preserves much kinetic energy by inertia moment at travel speed, and releases the kinetic energy to the air while decelerating by the break system. If we accumulate the kinetic energy while decelerating and reuse the energy at the accelerating stage, then it can elevate the fuel efficiency, reduce the emission and improve the motive power. This paper proposes a hydraulic type energy regenerative system which converts the kinetic energy into hydraulic energy at the stage of deceleration and reuses it at the starting and accelerating stage of vehicles. The test equipment which has the field condition of city bus was prepared to evaluate the performance for energy regeneration. The test results show that both energy regeneration efficiency and fuel efficiency are improved significantly and the emission is reduced notably.

Thermal Hydraulic Design Parameters Study for Severe Accidents Using Neural Networks

  • Roh, Chang-Hyun;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.469-474
    • /
    • 1997
  • To provide tile information ell severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore was performed to investigate the effect of thermal hydraulic design parameters ell severe accident progression of pressurized water reactors (PWRs), Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among mile parameters. For training. different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3&4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout(SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to tile other six parameters.

  • PDF

블리드 방식 가변력 솔레노이드를 사용한 라인압력 제어계의 실험적 연구 (An Experimental Study on the Transmission Line Pressure Control System Using Bleed Type Variable Force Solenoid)

  • 최득환;진영욱
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.703-707
    • /
    • 2007
  • 블리드 방식의 가변력 솔레노이드를 사용한 자동차용 변속기의 라인압력 제어계에 대한 실험 장치를 구성하고 실험을 수행하였다. 라인압력 제어계의 유압회로를 라인압력 제어 밸브, 감압 밸브, VFS 및 어큐뮬레이터 그리고 여러 개의 오리피스들로 구성하였으며, 몇 가지 실험 조건에 대하여 라인압력 제어계의 드로틀 압력과 라인압력의 정적 응답 및 동적 응답성을 측정하고 고찰하였다.

  • PDF

이중 EHA의 제어 특성 개선 (Control-performance Improvement of Dual EHAs)

  • 이성렬;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.32-38
    • /
    • 2016
  • For this paper, the position-control performances of dual EHA(electro-hydrostatic actuator) systems were investigated according to two cases wherein the double-rod- and single-rod-type hydraulic cylinders were combined. Since the control performance is significantly dependent on the load conditions including external forces such as the inertia load, it is proposed here that the two sub-EHAs are driven by separate position and force controllers, instead of two identical position controllers. According to the simulation results, the best performance was achieved by the position-controlled single-rod-type EHA that was combined with a force-controlled double-rod-type EHA. As the force-controlled double-rod-type EHA compensated for the external loads on the position-controlled single-rod-type EHA, the position-control performance was not influenced by external forces including the inertia load. In addition, the position-controlled single-rod-type EHA contributed to the enhancement of the damping ratio by absorbing the pressure peaks through its internal accumulator. Due to the symmetrical piston areas, the double-rod-type EHA is more suitable for force control than the single-rod- type EHA.

유압 충격압력 발생기의 시스템 설계와 성능평가 (System Design and Performance Test of Hydraulic Intensifier)

  • 김형의;이기천;김재훈
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.947-952
    • /
    • 2010
  • 압력용기, 유압호스 조립체, 어큐뮤레이터, 유압실린더, 유압밸브, 파이프 등의 제품들의 시험은 일반적으로 ISO와 SAE에서 정의되는 충격압력 조건들로 작동되고 있다. 충격압력 시험 장비는 높은 압력, 정확한 제어 시스템, 장기간 사용할 수 있는 수명을 가지는 것이 요구되며, 언급된 사항들은 유압 시스템에서 보다 높은 압력이 발생되어지는 충격압력 발생기를 제작하는데 필요하다. 충격압력 시험기는 제어는 편리하지만 높은 가격인 서보밸브 제어 시스템이 적용되었다. 제어 시스템의 적용은 시험하는 제품들에 영향을 주는 압력의 파형을 생성한다. 본 연구는 유량과 압력, 압력의 상승속도를 고려한 충격압력 발생시스템 설계 및 제작 과정을 연구하는 것을 목적으로 한다. 이것은 또한 결과로써 시스템에서 초고압의 압력을 발생시키는 압력 파형을 얻을 수 있었다.