• Title/Summary/Keyword: Hydraulic Turbine Generator

Search Result 27, Processing Time 0.032 seconds

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.

Velocity and Pressure Distributions of Tubular-type Hydroturbine for Variable Runner Vane Angle (러너베인 각도에 따른 튜블러 수차의 속도 및 압력분포)

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Nam, Chung-Do;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2839-2844
    • /
    • 2007
  • Micro hydraulic power generation of which the output is less or equal to a 100kW is attracting considerable attention. This is because of its small, simple, renewable, and abundant energy resources. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Moreover influences of pressure and velocity distributions with the variations of runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

A Study on the Drum Water Level Versus Incoming Water Quantities for Small Vertical Hydraulic Water Turbine Plant (종축소수력발전소의 인입수량과 드럼수위와의 관계에 관한 연구)

  • Che, Gyu-Shik;Jung, Ju-One
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.254-260
    • /
    • 2014
  • We studied water level rising of drum versus time in the small hydraulic vertical water turbine system in this paper. The water level rises continuously up to a certain point with the passage of time if the constant incoming water is supplied, while it stops rising and maintains equilibrium state without any more rising because it increases position energy and evatually makes outgoing velocity and outgoing water quantities of runner area. The water level of drum is determined independent of size, height, width, figure of drum or runner configuration. It comes out that the water level is dependent only on the incoming and outgoing water quantities, and the output power has similar behavior. Therefore, desirable water level and output power are not available unless incoming water quantities is abundant. We validate this phenomina through applyng our methodolgies to the real small hydraulic vertical water turbine system under constructing and testing in industrial facilities in Korea.

Stroke Analysis of Large Bore Hydraulic Snubber Supporting Reactor Coolant System (원자로 냉각재 계통을 지지하는 대구경 유압식 스너버의 이동거리 해석)

  • 이상호;윤기석;전장환;박명규;엄세윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.61-67
    • /
    • 1995
  • The steam generator, one of the major components in the reactor coolant system, plays an important role in transferring the thermal energy made in the reactor during normal operation to the secondary side and producing steam to drive turbine. A hydraulic snubber system is used in order to protect the steam generator under the dynamic loading condition and to absorb the thermal expansion transmitted by the reactor coolant piping due to high temperature and pressure during normal operation. In this study, the model for a geometrical linkage system is presented to analyze the snubber stroke of the steam generator and the parameters in the snubber stroke analysis are investigated. A method to analyze lever ratio of the linkage system which is required in the process of determining the snubber stiffness value is also presented. To discuss the validation of the suggested analysis, the analysis results are compared with the measured data during the hot functional test for the standardized 1000 Mwe pressurized water reactor plant under the construction.

  • PDF

Performance Characteristics of Small Tubular-type Hydroturbine according to the Guide Vane Opening Angle by Experiment and CFD (실험 및 CFD에 의한 가이드베인 개도에 따른 소형 튜블러 수차의 성능특성)

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.44-49
    • /
    • 2008
  • As the alternative energy, renewable energy should have been developing by many techniques, in order to substitute the fossil fuel which will be disappeared in the near future. One of the small hydropower generator, main concept of tubular turbine is based on using the different water pressure levels in pipe lines, energy which was initially wasted by using a reducing valve at the end of the pipeline, is collected by turbine in the hydro power generator. A propeller shaped hydro turbine has been used in order to use this renewable pressure energy in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the guide vane opening angle are examined in detail. First, it ensures the reliance of CFD by that of compared with experiment data. After all, the results of performance characteristics of the CFD and experiment show to confirm the data that power, head and efficiency of less than 4%, 2% and 5% respectively. Moreover influences of pressure, tangential and axial velocity distributions on turbine performance are investigated.

Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers (수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입)

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

Operation and Generation Characteristic of 100MW-Class Wound Rotor Synchronous Generator According to Number of Slots (슬롯 수에 따른 100MW급 권선형 동기발전기 발전특성 및 운전특성 비교)

  • Kim, Chang-Woo;Park, Yo-Han;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.4
    • /
    • pp.523-531
    • /
    • 2019
  • This paper deals with a wound-field synchronous machines(WFSM), with an electromagnet on its salient rotor, as an alternative to a permanent magnet in the rotor. We then examine the power performance characteristics, loss characteristics, V-curves and large short-circuit ratios for a large-scale synchronous generator, considering the leading and lagging operations, based on the finite-element method. We predict the performance of a 100MVA-class generator based on the operating range for a constant short-circuit ratio. At the last, We compared with the electromagnetic characteristics of three model according to number of slots.

The Development of Model to Calculate Maximum Power for Tidal Power Plant Operation (조력발전 운영을 위한 최대 발전량 산정 모델개발)

  • Oh, Min-Hwan;Kim, Hual-Soo;Kim, Jae-Hoon;Song, Gyu-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.505-508
    • /
    • 2006
  • Recently, concern for tidal power is being increased by newly recycled energy. It is important to decide on the maximum power estimate operation and it's stop by applying the difference of water level between tide level and artificial reservoir for the administration of tidal development. For maximum output of power through turbine generator, administrative variables and process on efficiency of hydraulic turbine and inflow discharge of reservoir is quite complicated because it is run through the connection of discharge-gate and turbine On the development of this model, the administrative process is decided, Operation block is presented for it's maximum power estimate.

  • PDF

Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test (500kW 조류력 발전장치 개발 및 울돌목 실증시험)

  • Sim, Wooseung;Choe, Ickhung;Lee, Kyuchan;Kim, Haiwook;Bae, Jonggug;Min, Kehsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF