DOI QR코드

DOI QR Code

Operation and Generation Characteristic of 100MW-Class Wound Rotor Synchronous Generator According to Number of Slots

슬롯 수에 따른 100MW급 권선형 동기발전기 발전특성 및 운전특성 비교

  • Kim, Chang-Woo (Dept. of Electrical Engineering, Chungnam National University) ;
  • Park, Yo-Han (Dept. of Electrical Engineering, Chungnam National University) ;
  • Choi, Jang-Young (Dept. of Electrical Engineering, Chungnam National University)
  • Received : 2018.09.17
  • Accepted : 2019.03.26
  • Published : 2019.04.01

Abstract

This paper deals with a wound-field synchronous machines(WFSM), with an electromagnet on its salient rotor, as an alternative to a permanent magnet in the rotor. We then examine the power performance characteristics, loss characteristics, V-curves and large short-circuit ratios for a large-scale synchronous generator, considering the leading and lagging operations, based on the finite-element method. We predict the performance of a 100MVA-class generator based on the operating range for a constant short-circuit ratio. At the last, We compared with the electromagnetic characteristics of three model according to number of slots.

Keywords

Acknowledgement

본 연구는 2018년도 지식경제부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다.(과제번호 : 20183010025420)

References

  1. Ministry of Trade, Industry and Energy, "8th Basic Plan for Electricity Supply and Demand (2017~2031), No. 2017-611, pp. 7-80, 2017.
  2. Korea Water Resources Corporation, "Status of water turbine generators with more than 10MW class", Information Disclosure Application, 2018.
  3. K. Weeber, "Determination of dynamic parameters of large hydro-generators by finite-element simulation of three-pahse sudden short-circuit tests", Electric Machines and Drives Conference Record, IEEE International, 1997.
  4. Dongsu Lee, "Parameters extraction and design characteristic of large-scale hydraulic turbine generator with wound-rotor considering leading operation based on electromagnetic FEA", Sungkyunkwan University General Graduate School, 2016
  5. H. Liu, L. Xu, M. Shangguan and W. N. Fu, "Finite Element Analysis of 1MW High Speed Wound-Rotor Synchronous Machine", IEEE Trans. Magn., Vol. 48, No. 11, 2012.
  6. A. W. Rankin, "Per unit impedance of synchronous machines", AIEE Trans., 64, pp. 564-941, 1985.
  7. H. Ohsaki, L. Queval and Y. Terao, "Design and Characteristic Analysis of 10MW Class Superconducting Wind Turbine Generator with Different Types of Stator Rotor Configurations", Clean Electrical Power (ICCEP) International Conference, 2013.
  8. R. Richter, "Electrical Machines, Vol. 2, Synchronous Machines", Verlag Birkhauser, Basel, 1954.
  9. J. H. Walker, "Large Synchronous Machines", Clarendon Press, Oxford, 1981.
  10. Ion Boldea, "Synchronous Generator" Polytechnical institut, Timisoara, Romania, 2001.
  11. O. Kokoko, A. Meerkhouf, A. Tounzi, Al-Haddad and E. Guillot, "Analysis of Air-Gap Influence on a Large Hydro Generator's Parameters Using Sudden Symmetrical Short-Circuit Test", IEEE International Electric Machines & Drives Conference (IEMDC), 2015.
  12. S. L. Nabeta, A. Foggia, J. L. Coulomb and G. Reyne, "A time-stepped finite-element simulation of a symmetrical short-circuit in a synchronous machine", IEEE Trans. Magn., Vol. 30, pp. 3683-3686, 1994. https://doi.org/10.1109/20.312740
  13. R. Wamkeue, I. Kamwa and M. Chacha, "Line-toline short-circuit-based finite-element performance and parameter predictions of large hydrogenerators", IEEE Trans. Energy Convers., Vol. 18, pp. 370-378, 2003. https://doi.org/10.1109/TEC.2003.815672
  14. J. P. Martin, C. E. Tindall and D. J. Morrow, "Synchronous machine parameter determination using the sudden short-circuit axis currents", IEEE Trans. Energy Convers., Vol. 14, pp. 454-459, 1999. https://doi.org/10.1109/60.790896
  15. J. Legranger and G. Friedrich, "Design of a brushless rotor supply for a wound rotor synchronous machine for integrated starter generator", in Proc. IEEE VPPC, pp. 236-241, 2007.
  16. G. Friedrich, "Comparative study of three control strategies for the synchronous salient poles and wound rotor machin in automotive application with on board energy", in Proc. Power Electron. Variable Speed Drives, pp. 706-709, 1994.
  17. C. Rossi, D. Casadei, A. Pilati and M. Marano, "Wound rotor salient pole synchronous machine drive for electric traction", in Proc. IEEE Conf. Ind. Appl., pp. 1235-1241, 2006.