• 제목/요약/키워드: Hydraulic Transmission Lines

검색결과 12건 처리시간 0.024초

분포정수계 유압관로 모델의 동특성 해석 (Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

유압(油壓) 관로(管路) 내(內)에서 유체(流體) 유동(流動)의 과도응답특성(過渡應答特性)에 관(關)한 이론적연구(理論的硏究) (A Characteristics of Transient fluid flow in a Hydraulic circular pipe)

  • 김형준;정지철;유영태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.829-834
    • /
    • 2000
  • This paper is primarily directed toward analyzing the transient response characteristics in hydraulic pipe lines. The exact solution to the transient response characteristics was obtained by using the complicated transfer function derived by Iberall. The discrepancy with the exact and approximate is small, so the approximate solution is adopted to the theoretical one. An equation was derived which describes the pressure times relationship Hat occurs at the end of volume terminated transmission line following a sudden pressure change at its inputs. As a result, It is found that the density has relationship about the Wave Propagation is very useful in analyzing the transient response characteristics of hydraulic pipe lines. The velocity of Pressure wave Propagation decreases as the density of fluid increased.

  • PDF

축압기를 갖는 유압관로의 동특성에 관한 연구 (Dynamic Response of Hydraulic Transmission Lines with an Accumulator)

  • 이일영;홍봉기
    • 수산해양기술연구
    • /
    • 제17권1호
    • /
    • pp.29-34
    • /
    • 1981
  • More recently, unsteady flow in small-diameter pipes plays a major role in liquid propellantrocket systems, hydraulic and pneumatic control system, and elsewhere. And it has shown that line dynamics can have a marked effect on the hydraulic system characteristics. In this paper, transfer function of hydraulic lines with an accumulator and an outlet orifice is' developed and compared with experimental data from frequency response tests at various airvolume(V.) and the location of accumulator(ld1t), so that their performance may be correctly and easily predicted and the design of the systems incorporating them improved. The obtained results are as follows: 1. The dynamic response of hydraulic lines may be analyzed more accurately by use of the viscous term(22) in unsteady laminar flow. 2. There was good agreement between the theoretical and experimental results of this investigation, and hydraulic systems with liines included an accumulator can be analyzed more accurately by use of the pressure transfer function given by eq. (16). 3. For the mitigation of surge in hydraulic lines, it is more effective that the location ofaccumulator is close to the pipe outlet side. 4. According to the gas volume of accumulator is increased(the sealing pressure is close tomean line pressure), the damping effect of pressure wave is improved.

  • PDF

유압주행모터의 변속시 발생하는 충격특성에 관한 연구 (A Study on the Shock Characteristics in the Hydraulic Power Shifting System of the Hydraulic Travel Motor)

  • 이주성;이계복
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.305-310
    • /
    • 2001
  • Hydraulic power shifting systems of hydraulic travel motor may be far safer than mechanical power transmission systems. Thus, hydraulic power shifting systems are widely used for speed control on the hydraulic equipments. In the case of liquid shifting lines, the rapid change of area, such as valve closing, can result in a large pressure transient. It is necessary to assure proper control method in order to obtain the smallest shift shock. This study conducts the shock characteristics of hydraulic power shifting system of the hydraulic travel motor. Experimental results show that shock pressure depends on the operating pressure, flow rate and pipe line area. The shock characteristics can be applied for reducing shocks.

  • PDF

전달관로 요소를 이용한 가변스텝 시뮬레이션 (Variable step size simulation using transmission line element)

  • 황운규;조승호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.682-687
    • /
    • 2000
  • In this paper, the simulation methods using transmission lines are studied and realized, which are necessary in design and analysis of hydraulic control systems. The basic idea of this method is that system components are separated by transmission line element for simulation. The PI-controller can keep inductance level as low as desired. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. Parallel hydraulic circuits are simulated using parallel processing algorithm. To shoe that using variable timestep size in each subsystem, simulation time can be reduced. Performance of the simulation results is compared with that of Runge Kutta method.

  • PDF

서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구 (A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System)

  • 윤홍식;김성동
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

유압식 로봇의 힘 제어를 위한 유압 서보 시스템의 특성에 관한 연구 (Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots)

  • 김효곤;이종원;박상덕;한창수
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.219-225
    • /
    • 2015
  • 유압 서보 시스템은 구동기 단에서 부피 대비 큰 힘을 출력할 수 있으므로 로봇에 적용 시, 로봇의 팔 또는 다리를 경량화할 수 있다. 이것은 로봇의 동적 특성과 에너지 효율을 향상 시키므로 고출력이 필요한 몇몇의 근력지원용 착용형 로봇과 사족 보행 로봇들은 유압 서보 시스템을 사용한다. 이 로봇들은 사용자나 외부 환경에 순응하기 위해 힘제어를 하는 것이 유리하지만 유압식 로봇은 유압서보 시스템이 갖는 비선형성으로 인해 정교한 힘제어가 쉽지 않다. 본 논문에서는 서보 밸브, 배관 그리고 유압 실린더로 구성되는 유압 서보 시스템의 시뮬레이션 모델을 개발하여 유압 서보 시스템의 힘제어 시 고려해야 할 사항에 대해 분석하였다. 그리고 비선형 모델을 이용한 힘제어 기법을 제안하고 시뮬레이션을 통해 효과를 검증하였다.

유압관로에서 비정상유동의 압력전파특성 (Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline)

  • 유영태;나기대;김지환
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.

경계조건변화에 따른 동력전달관로의 동특성 (Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line)

  • 나기대;유영태;김지환
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

관로에서 점성유체 유동의 압력파 전달에 관한 연구 (A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line)

  • 김형오;나기대;모양우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF