• Title/Summary/Keyword: Hydraulic Spool

Search Result 81, Processing Time 0.023 seconds

Analysis of Characteristics of Load Movement in Mobile Hydraulic Equipment (모바일 유압장치에서 부하의 유지와 내림 특성 비교)

  • Jo, Mi Hyeon;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.17-22
    • /
    • 2018
  • Mobile hydraulics require higher energy efficiency, and a simpler as well as robust design, than general industrial hydraulics. The 6/3-way directional control valve is widely used as a mobile hydraulic control valve. However, since the 6/3-way directional control valve is a spool type valve, it is difficult to maintain the load. A counterbalance valve is typically used, to maintain the load, and lift down. However, in an industrial field using a mobile hydraulics device, a pilot controlled check valve may be used to implement holding and lifting operation of the self-weight load, and a relief valve may be used simply to exert back pressure. But no comparative analysis of advantages and disadvantages of each method was revealed. In this study, various methods of holding and unloading load with self-weight in mobile hydraulics are investigated, and compared through simulation using AMESim software. This is experimentally verified by using Festo's mobile hydraulic test rig TP800.

A Study on the Development of Hall Effect Sensor for Hydraulic Locking Alarm in Ship's Steering Gear (선박용조타기의 Hydraulic Locking Alarm용 Hall Effect Sensor 개발에 관한 연구)

  • Lee, Jung-Min;Chung, Won-Jee;Lim, Dong-Jae;Choi, Kyung-Shin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.116-121
    • /
    • 2019
  • The LVDT (Linear Variable Displacement Transducer) type sensor used for the existing ship's steering gear is simple on / off that does not perform proportional control operation to the control & unloading device. When the main spool is located at both extremes, It is reflected in the price by using an expensive sensor for import. In this paper, the Hall Effect Sensor is applied to Hydraulic Locking Alarm to analyze classification rules, structure, characteristics and operation principle of valves, and research on localization development in terms of cost reduction. The comparative analysis of the existing prototypes and the cause analysis of the problems were carried out, and the structural analysis showed satisfactory results within the allowable stress range. In addition, it was verified through experiments that the actual operation is realized by applying the actual developed product, and it was confirmed that the load on the maximum value exceeds the allowable maximum load even in the case of the universal tensile test in preparation for the departure of the rod casing.

Analysis of Ratio Changing Characteristics of a Metal V-Belt CVT Adopting Primary Pressure Regulation (압력제어 방식 금속 벨트 CVT 변속특성 해석)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.179-187
    • /
    • 2001
  • In this paper, a primary pressure regulating type ratio control system is developed for a metal belt CVT, and the CVT ratio changing characteristics are investigated by simulation and experiment. The hydraulic part of the ratio control system has a simple structure with one 3-way spool valve as a main ratio control valve and one bleed type variable force solenoid as a pilot valve. The mathematical modelling of the CVT hydraulic system is derived by considering the CVT shift dynamics. Simulation results of CVT speed ratio and the primary pressure agree with the experimental results demonstrating the validity of the dynamic models. It is found from the simulation and experimental results that the response time of speed ratio and primary pressure can be shortened by increasing the ratio control valve port area, and the size of feedback orifice of ratio control valve gives a damping effect on the primary pressure oscillation.

  • PDF

항공기용 유압 스푸울 밸브의 윤활해석

  • 박태조;김래성;김치붕
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.218-223
    • /
    • 1997
  • 유압장치의 핵심부품인 유압 제어밸브(hydraulic control valve)는 유압펌프 등에 의하여 가압된 유압유의 압력과 유량을 제어하고 유동방향을 변화시키는 주요기능을 수행한다. 특히, 대부분의 제어밸브는 스푸울(spool)과 슬리브(sleeve)를 기본구조로 채용하고 있다. 피스톤 형상인 스푸울이 슬리브내를 왕복운동하면 스푸울과 슬리브 사이의 간극(clearance)에서는 점성유체인 유압유의 윤활작용에 의하여 원주방향으로 비대칭인 유체압력이 발생한다. 이 결과로 스푸울에 측력(lateral force)이 작용하며, 조건에 따라서는 스푸울에 작용하며, 조건에 따라서는 스푸울에 작용하는 마찰력이 증대할 뿐만 아니라 스푸울과 슬리브의 내벽에 과도한 마멸(wear)을 유방시키기도 하여 제어밸브의 성능을 크게 저하시키기도 한다. 유압공학분야서는 이를 유체고착(hydraulic locking) 현상이라고 부른다. 본 논문에서는 항공기 Flap actuator의 Selector manifold에서 사용되는 스푸울 밸브의 성능에 큰 영향을 미칠 것으로 예상되는 스프울과 슬리브 사이 간극에서의 윤활특성을 이론적으로 조사하고자 한다.

  • PDF

Development of double acting brake system integrated counter balance valve (카운터 밸런스 밸브를 내장한 양방향 유압 브레이크 시스템 개발)

  • 김형의;이용범;윤소남;이일영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.962-967
    • /
    • 1991
  • A counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. In this study, for the purpose of easy estimation about dynamic characteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. Dynamic characteristics were analysed by numerical integration using Runge-Kutta method, because the equations in this circuit with counter balance valve contain various nonlinear terms. Propriety of this analysis method is verified by experiment. For the purpose of obtaining fundamental data for preventing instability, this study experimented the effects of the spool taper, spring constant, cylindrical choke. And we developed double acting brake system integrated counter balance valve.

  • PDF

Bucket Actuator Pressure Control by Independent Metering Valve for Excavator (독립제어 밸브에 의한 굴삭기 버켓 액추에이터 압력제어)

  • Yang, Joo-Ho;Jung, Tae-Rang
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.36-42
    • /
    • 2016
  • A cylinder control system of the conventional construction machine has been controlled by hydraulic spool valves. This system is low-cost but system efficiency is not high. Recently, to improve this, all valves are controlled electronically and independently. Bu and Yao suggested four way electronic hydraulic control valve system. It is called IMVT(Independent Metering Valve Technology). The purpose of the study is to find proper IMV pressure control method for excavator and to validate excavator's bucket regeneration energy effect by controlling the IMV system. In this paper, we mathematically describe the bucket system of excavator first. And then, based on these results, we design the control system which is divided into two operations(none regeneration or regeneration).The results of the experiment show the desirable performance and usefulness of the designed control system.

Analysis on the Dynamic Characteristics of a DDV Actuation System of a FBW Aircraft (FBW 항공기의 DDV 구동장치에 대한 운동특성 해석)

  • Nam, Yun-Su;Park, Hae-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.74-80
    • /
    • 2006
  • This paper deals with the control and fault monitoring of a DDV hydraulic actuation system. A hydraulic servo system has a nonlinear dynamics of an orifice flow through a valve spool. A full nonlinear model for a DDV actuation system is driven, and linearized to a simple model which is convenient for a control loop and fault monitor design. A top level requirement on the performance and safety for the actuation system is introduced. A control system and fault monitoring structure which can meet these requirements are discussed. A simulation package for a DDV actuation system which has a triplex redundant structure is developed.

Verification of Control Algorithm for Removing Oil Contaminant Factor from Proportional Pressure Control Valve (전자식 비례 압력제어밸브 내 오일 오염 입자 제거 제어 알고리즘 검증)

  • Cheon, Su Hwan;Park, Jin Kam;Jang, Kyoung Je;Sim, Sung Bo;Jang, Min Ho;Lee, Jin Woong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • An electro proportional pressure control valve is mainly used to control the clutch of an agricultural tractor's automatic transmission. During transmission, the operating, hydraulic oil is mix with many kinds of contaminants. The contaminants can be trapped between the valve body and spool of the proportional pressure control valve leading to abnormal operating conditions and finally critical damage to the transmission hydraulic system. The present study aimed to verify the valve control algorithm as a basic study of developing control logic that removes contaminants between the spool and the body of the proportional pressure control valve. To develop the algorithm, MATLAB/SIMULINK was used. PWM method was used to control the applied solenoid coil current. The effectiveness of the algorithm was verified by comparing the actual pressure of the normal valve with the actual pressure of the abnormal valve. Based on the present study findings, when the algorithm was applied, the response of the valve pressure according to the current became stable and oil contaminated particles were removed. In the future study, the control algorithm will be optimized for the stability of the proportional pressure reducing valve, and it will be verified in consideration with the driving of the clutch.

An Optimal Design of pilot type relief valve by Genetic Algorithm (파일럿형 압력 릴리프 밸브의 최적설계)

  • 김승우;안경관;양순용;이병룡;윤소남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1006-1011
    • /
    • 2003
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.