• Title/Summary/Keyword: Hydraulic Robot

Search Result 100, Processing Time 0.028 seconds

Structural Safety Evaluation of Hydraulic Steering System for Ship (선박용 유압 조타 시스템의 구조적 안전성 평가)

  • Lee, Moonhee;Son, Insoo;Yang, Changgun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

A Robust Controller Design for Robot Manipulators with Hydraulic Actuator Dynamics (유압구동기를 채용한 로봇 매니플레이터에 대한 강인제어기 설계)

  • Park, Gwang-Seok;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.598-600
    • /
    • 1998
  • In this paper, a robust controller is proposed to achieve the accurate tracking for uncertain robot manipulators with hydraulic actuator dynamics. The parameter uncertainty can be quantified by the linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is proposed using the boundary layer technique around the sliding surface. It is shown that the smoothing controller guarantees the uniform ultimate boundedness of the tracking, error. The proposed controller shows good better tracking performance.

  • PDF

Trajectory Control of Underwater Robot using Time Delay Control (시간지연제어기법을 이용한 수중로봇의 궤적 제어)

  • Park, Joon-Young;Cho, Byung-Hak;Lee, Jae-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.685-692
    • /
    • 2008
  • In this paper, the trajectory control problem of an underwater robot is addressed. From the viewpoint of control engineering, trajectory control of the underwater robot is not an easy task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy forces and hydrodynamic damping, the difference between the centers of buoyancy and gravity, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring the nonlinear plant dynamics, and was proven to be highly robust against disturbances and uncertainties. We confirmed its effectiveness through experiments.

Development of Optimum Design Factor for Automated Steel Fabrication Construction System (철골조립자동화시스템의 설계최적화를 위한 요구성능도출에 관한 연구)

  • Lee, Myung-Do;Kim, Dae-Won;Lee, Bo-Hyeong;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.235-239
    • /
    • 2009
  • As robotic technologies have become more actively utilized to automate many construction tasks, they have been able to improve the construction productivity, quality, and worker's safety on site. A new advanced system, Robot-based Construction Automation (RCA) system, is currently being developed. To accomplish RCA system effectively, Design for automation (DFA) should be performed in automation system developing phase. The performance criteria of this system are a major cause of design changes. It is required exhaustive review for development new system. This research analyzed the design changes of Climbing Hydraulic Robot system and Construction Factory (CF), being currently developed in the field of applied RCA systems. And the design change matters according to performance criteria in each system's design-by-step were analyzed. The purpose of this research is developing the performance criteria in the developing phase of RCA system, and then will be served as basis for system design in similar projects.

  • PDF

Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network (인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Jung, Jong-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

Robust Trajectory Control of a Hydraulic Excavator using Disturbance Observer in $H_\infty$Framework ($H_\infty$구조의 외란 관측기를 이용한 유압 굴삭기의 강인한 궤적 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.130-140
    • /
    • 2003
  • This paper presents an $H_\infty$controller synthesis based on disturbance observer for the trajectory control of a hydraulic excavator. Compared to conventional robot manipulators driven by electrical motors, hydraulic excavator have more nonlinear and coupled dynamics. In particular, the interactions between an excavation tool and the materials being excavated are unstructured and complex. In addition, its operating modes depend on working conditions, which make it difficult to not only derive the exact mathematical model but also design a controller systematically. In this study, the approximated linear model obtained through off-line system identification is used as nominal plant model for a disturbance observer. A disturbance observer based tracking controller which considers the effect of disturbance and model uncertainty is synthesized in $H_\infty$frameworks. Simulation results are used to demonstrate the applicability of the proposed control scheme.

The Position Control of Stroke Sensing Cylinder for Automatic Excavation (자동 굴삭을 위한 스토로크 센싱 실린더 위치 제어)

  • 손구영;심재군;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.475-480
    • /
    • 2002
  • The Field Robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we developed an interfacing hardware part of stroke sensing cylinder using magnetic sensor and estimated its performance. It is illustrated by experiment that the proposed control system by stroke sensing cylinder gives good performances in the position control

  • PDF