• Title/Summary/Keyword: Hydraulic Head Distribution

Search Result 46, Processing Time 0.028 seconds

A Study on the Distribution of Hydraulic Head Along the Lateral in a Pilot-Scale Riverbank Filtration (강변여과에서 파일럿규모 수평집수관의 수두분포 연구)

  • Jeong, Jae-Min;Park, Jae-Young;Lee, Jong-Jin;Kim, Yong-Woon;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.334-339
    • /
    • 2013
  • A pilot-scale sand-box experiment simulating a lateral of collector well used in riverbank filtration was performed, and hydraulic head distributions along the lateral were measured according to the various drawdowns at the well. The results of this experiment were compared to the predicted values obtained using a theory previously developed by Kim in order for its validation. This theory predicts the head loss in a large-scale lateral given the loss in a small-scale one, and to have actual values for comparison, the results from a lab-scale experiment previously performed by Kim were employed. Comparing the experimental values to the extrapolated value indeed confirmed the validity of the theory. A procedure to determine the hydraulic head distribution of a practical-scale lateral was also presented applying the theory to the experimental result of this study in an effort to show the process of lateral design for riverbank filtration.

Performance Tests of the Fuel Pump for a Turbopump (터보펌프용 연료펌프의 성능 시험)

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jinhan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.655-659
    • /
    • 2004
  • Performance tests of the fuel pump for a turbopump unit have been successfully carried out in water environment. The tests are performed to evaluate the hydraulic and cavitation performances. The head and volute pressure distribution of the fuel pump followed the conventional similarity rule - unlike this, the secondary passage pressure distribution showed a small deviation from the conventional similarity rule. Also, critical cavitation number decreased as the rotational speed of the pump increased.

  • PDF

GROUNDWATER POLLUTION CONTROL IN UNCONTROLLED WASTE LANDFILLS (폐기물 매립지 지반내에서의 지하수오염제어)

  • Lee, Gwang-Yeol;Jang, Yeon-Su;Han, Il-Yeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.75-82
    • /
    • 1994
  • Groundwater in waste landfills can be contarninated by leachates produced from wastes and flow down toward rivers. These accidents are easily discovered in uncontrolled landfill sites. In this study, applications for controlling groundwater pollution and protecting river pollution were studied using installation of cut-off walls around the waste landfill. Analyses for the efficiency and applicability of the cut-off wall were made under environmental, economical anc technical considerations. Cut-off walls were installed at the upgradient and the downgradient. prediction analyses for the hydraulic head distribution over the site were made for concerning with the final cover and without the final cover. Also, the hydraulic head distribution was predicted with well-pumping on both cases, upgradient cut-off wall and downgradient cut-off wall.

  • PDF

Estimation of the Reliability of Water Distribution Systems using HSPDA Model and ADF Index (HSPDA 모형 및 ADF index를 이용한 상수관망의 신뢰도 산정)

  • Baek, Chun-Woo;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.201-210
    • /
    • 2010
  • In this study, new methodology to estimate the reliability of a water distribution system using HSPDA model is suggested. In general, the reliability of a water distribution system can be determined by estimating either the ratio of the required demand to the available demand or the ratio of the number of nodes with sufficient pressure head to the number of nodes with insufficient pressure head when the abnormal operating condition occurs. To perform this approach, hydraulic analysis under the abnormal operating condition is essential. However, if the Demand-Driven Analysis (DDA) which is dependant on the assumption that the required demand at a demand node is always satisfied regardless of actual nodal pressure head is used to estimate the reliability of a water distribution system, the reliability may be underestimated due to the defect of the DDA. Therefore, it is necessary to apply the Pressure-Driven Analysis (PDA) having a different assumption to the DDA's which is that available nodal demand is proportion to nodal pressure head. However, because previous study used a semi-PDA model and the PDA model which had limited applicability depending on the characteristics of a network, proper estimation of the reliability of a water distribution system was impossible. Thus, in this study, a new methodology is suggested by using HSPDA model which can overcome weak points of existing PDA model and Available Demand Fraction (ADF) index to estimate the reliability. The HSPDA can simulate the hydraulic condition of a water distribution system under abnormal operating condition and based on the hydraulic condition simulated, ADF index at each node is calculated to quantify the reliability of a water distribution system. The suggested model is applied to sample networks and the results are compared with those of existing method to demonstrate its applicability.

Development and Its Application of a Discrete Fracture Flow Model for the Analysis of Gas-Water Transient Flow in Fractured Rock Masses Around Storage Cavern (지하저장공동 주변 불연속 암반에서의 가스-물 천이유동해석을 위한 개별균열 유동모델의 개발 및 응용)

  • 나승훈;성원모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.705-712
    • /
    • 2000
  • The fluid generally flows through fractures in crystalline rocks where most of underground storage facilities are constructed because of their low hydraulic conductivities. The fractured rock is better to be conceptualized with a discrete fracture concept, rather continuum approach. In the aspect of fluid flow in underground, the simultaneous flow of groundwater and gas should be considered in the cases of generation and leakage of gas in nuclear waste disposal facilities, air sparging process and soil vapor extraction for eliminating contaminants in soil or rock pore, and pneumatic fracturing for the improvement of permeability of rock mass. For the purpose of appropriate analysis of groundwater-gas flow, this study presents an unsteady-state multi-phase FEM fracture network simulator. Numerical simulation has been also conducted to investigate the hydraulic head distribution and air tightness around Ulsan LPG storage cavern. The recorded hydraulic head at the observation well Y was -5 to -10 m. From the results obtained by the developed model, it shows that the discrete fracture model yielded hydraulic head of -10 m, whereas great discrepancy with the field data was observed in the case of equivalent continuum modeling. The air tightness of individual fractures around cavern was examined according to two different operating pressures and as a result, only several numbers of fractures neighboring the cavern did not satisfy the criteria of air tightness at 882 kPa of cavern pressure. In the meantime, when operating pressure is 710.5 kPa, the most areas did not satisfy air tightness criteria. Finally, in the case of gas leaking from cavern to the surrounding rocks, the resulted hydraulic head and flowing pattern was changed and, therefore, gas was leaked out from the cavern ceiling and groundwater was flowed into the cavern through the walls.

  • PDF

Stochastic Simulation of Groundwater Flow in Heterogeneous Formations: a Virtual Setting via Realizations of Random Field (불균질지층내 지하수 유동의 확률론적 분석 : 무작위성 분포 재생을 통한 가상적 수리시험)

  • Lee, Kang-Kun
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.90-99
    • /
    • 1994
  • Heterogeneous hydraulic conductivity in a flow domain is generated under the assumption that it is a random variable with a lognormal, spatially-correlated distribution. The hydraulic head and the conductivity in a groundwater flow system are represented as a stochastic process. The method of Monte Carlo Simulation (MCS) and the finite element method (FEM) are used to determine the statistics of the head and the logconductivity. The second moments of the head and the logconductivity indicate that the cross-covariance of the logconductivity with the head has characteristic distribution patterns depending on the properties of sources, boundary conditions, head gradients, and correlation scales. The negative cross-correlation outlines a weak-response zone where the flow system is weakly responding to a stress change in the flow domain. The stochastic approach has a potential to quantitatively delineate the zone of influence through computations of the cross-covariance distribution.

  • PDF

로켓엔진용 연료펌프의 성능 시험

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.143-149
    • /
    • 2005
  • To evaluate the hydraulic and cavitation performance of a fuel pump for a liquid rocket engine, performance tests of the pump, which consist of hydraulic tests and cavitation tests, were conducted in water environment with various condition. In the hydraulic tests, the head, efficiency and volute pressure distribution of the pump are found to follow the conventional similarity rule, whereas the secondary flow pressure shows a small deviation from the similarity rule. As the floating gap is constricted, the efficiency of the pump improves and the secondary flow pressure decreases. However, the inner diameter of bypass line orifice does not show clear relationship with the pump efficiency. In the cavitation tests, measurements of the head and the NPSH indicate that the pump shows better cavitation performance as the rotational speed of the pump increases.

  • PDF

Internal Flow Analysis of a Tubular-type Small Hydroturbine by Runner Vane Angle

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1044-1050
    • /
    • 2008
  • Most of developed countries, the consumption of fossil fuels has been serious problems that cause serious environment pollution like acid rain, global warming. Also, we have faced that limitation fossil fuels will be exhausted. Currently, small hydropower attracts attention because of its small, clean, renewable, and abundant energy resources to develop. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Tubular-turbine among small hydraulic power generation can be used at low-head. The purpose of this study is to research turbine's efficiency due to runner vane angle using CFD analysis.

Development of The New High Specific Speed Fixed Blade Turbine Runner

  • Skotak, Ales;Mikulasek, Josef;Obrovsky, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.392-399
    • /
    • 2009
  • The paper concerns the description of the step by step development process of the new fixed blade runner called "Mixer" suitable for the uprating of the Francis turbines units installed at the older low head hydropower plants. In the paper the details of hydraulic and mechanical design are presented. Since the rotational speed of the new runner is significantly higher then the rotational speed of the original Francis one, the direct coupling of the turbine to the generator can be applied. The maximum efficiency at prescribed operational point was reached by the geometry optimization of two most important components. In the first step the optimization of the draft tube geometry was carried out. The condition for the draft tube geometry optimization was to design the new geometry of the draft tube within the original bad draft tube shape without any extensive civil works. The runner blade geometry optimization was carried out on the runner coupled with the draft tube domain. The blade geometry of the runner was optimized using automatic direct search optimization procedure. The method used for the objective function minimum search is a kind of the Nelder-Mead simplex method. The objective function concerns efficiency, required net head and cavitation features. After successful hydraulic design the modal and stress analysis was carried out on the prototype scale runner. The static pressure distribution from flow simulation was used as a load condition. The modal analysis in air and in water was carried out and the results were compared. The final runner was manufactured in model scale and it is going to be tested in hydraulic laboratory. Since the turbine with the fixed blade runner does not allow double regulation like in case of full Kaplan turbine, it can be profitably used mainly at power plants with smaller changes of operational conditions or in case with more units installed. The advantages are simple manufacturing, installation and therefore lower expenses and short delivery time for turbine uprating.

A Measurement of Hydraulic Conductivity of Disturbed Sandy Soils by Particle Analysis and Falling Head Method (입도분석 및 변수두법을 이용한 교란 사질 토양의 투수계수 측정)

  • Jeong Ji-Gon;Seo Byong-Min;Ha Seong-Ho;Lee Dong-Won
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.15-21
    • /
    • 2006
  • Sandy soils obtained from the field were examined by the way of particle analyses. The hydraulic conductivity values of the disturbed soil samples were measured by the falling head method. Then the correlations between the hydraulic conductivity and particle distribution were defined. The soil which was a product of the weathering of the granitic rocks belonged to sand and loamy sand area in a sand-silt-clay triangular diagram. The measurements of hydraulic conductivity were $1.15X10^{-5}\sim7.31X10^{-4}cm/sec$ which is the range of sand and silt. It was clearly observed that the hydraulic conductivity measurements of the sandy soils showed stronger correlations with the particle variances rather than the mean grain sizes. The larger the variances, the smaller the hydraulic conductivity measurements. The sandy soil which was a product of weathered granite and whose mean grain size was $0.38\sim1.97mm$ showed regression curves of $y=6.0E-5x^{-1.4}$ in a correlations between hydraulic conductivity and particle variances. Accordingly, it is clearly concluded that making estimates with-out any consideration about particle variances can produce serious errors.