• Title/Summary/Keyword: Hydraulic Evaluation

Search Result 661, Processing Time 0.022 seconds

Seismic Performance Evaluation of Dam Structures and Penstock Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 댐 구조체와 수압철관의 내진성능평가)

  • Heo, So-Hyeon;Nam, Gwang-Sik;Jeong, Yeong-Seok;Kwon, Minho
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.141-150
    • /
    • 2022
  • Responding to the increasing demand for research on seismic resistance of structures triggered by a large-scale earthquake in Korea, the Ministry of the Interior and Safety revised the typical application of the existing seismic design standards with the national seismic performance target enhanced. Therefore, in this paper, the dam body of the aged Test-Bed and the penstock with fluid were modeled by the three-dimensional finite element method by introducing several variables. The current seismic design standard law confirmed the safety of the dam structure and penstock against seismic waves. As a result of the 3D finite element analysis, the stress change due to the water impact of the penstock was minimal, and it was confirmed that the effect of the hydraulic pressure was more significant than the water impact in the earthquake situation. When the hydrostatic pressure is in the form of SPH, it was analyzed that the motion of the fluid and the location of stress caused by the earthquake can be effectively represented, and it will be easier to analyze the weak part. As a result of the analysis, which considers penstock's corrosion, the degree of stress dispersion gets smaller because the penstock is embedded in the body. The stress result is minimal, less than 1% of the yield stress of the steel. In addition, although there is a possibility of micro-tensile cracks occurring in the inlet of the dam, it has not been shown to have a significant effect on the stress increa.

Machine-Learning Evaluation of Factors Influencing Landslides (머신러닝기법을 이용한 산사태 발생인자의 영향도 분석)

  • Park, Seong-Yong;Moon, Seong-Woo;Choi, Jaewan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.701-718
    • /
    • 2021
  • Geological field surveys and a series of laboratory tests were conducted to obtain data related to landslides in Sancheok-myeon, Chungju-si, Chungcheongbuk-do, South Korea where many landslides occurred in the summer of 2020. The magnitudes of various factors' influence on landslide occurrence were evaluated using logistic regression analysis and an artificial neural network. Undisturbed specimens were sampled according to landslide occurrence, and dynamic cone penetration testing measured the depth of the soil layer during geological field surveys. Laboratory tests were performed following the standards of ASTM International. To solve the problem of multicollinearity, the variation inflation factor was calculated for all factors related to landslides, and then nine factors (shear strength, lithology, saturated water content, specific gravity, hydraulic conductivity, USCS, slope angle, and elevation) were determined as influential factors for consideration by machine learning techniques. Minimum-maximum normalization compared factors directly with each other. Logistic regression analysis identified soil depth, slope angle, saturated water content, and shear strength as having the greatest influence (in that order) on the occurrence of landslides. Artificial neural network analysis ranked factors by greatest influence in the order of slope angle, soil depth, saturated water content, and shear strength. Arithmetically averaging the effectiveness of both analyses found slope angle, soil depth, saturated water content, and shear strength as the top four factors. The sum of their effectiveness was ~70%.

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

Evaluation of Economic L/W Ratio and the Best Shape of Baffle in Clearwell by Using CFD (전산유체를 활용한 정수지 최적 도류벽 형태 및 경제적인 장폭비 산정)

  • Cho, Young-Man;Roh, Jae-Soon;Bin, Jae-Hoon;Kim, Tae-Kyun;Choi, Young-June
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.432-438
    • /
    • 2011
  • We need to make the standard of the best baffle shape and L/W ratio of clearwell due to insufficient disinfection in short L/W ratio and uneconomic design in long L/W ratio. The objectives of this research were to evaluate the best shape of baffle and economic L/W ratio in the all sorts of shape and size by using computational fluid dynamics. In the results of this research, the baffle with smaller number of turning flow is more beneficial for hydraulic efficiency. So, even if the same shape and structure, baffle should be designed as smaller number in turning flow. The best shape of baffle is ZigZag type (model 2) and the worst shape is Distributed types (model 4). The ZigZag type can reduce number of baffle about 67% than that of the Distributed types. In the ZigZag type, economic L/W ratio is 30~50. If L/W ratio exceed over 50, it is not economic because construction costs greatly increase and an increasing rate of $T_{10}/T$ is very small.

Evaluation of Downflow Granular Media Filtration for Stormwater Treatment (강우유출수에 의한 비점오염 저감을 위한 하향류식 입상여과 효율 평가)

  • Lim, Chan-Su;Kim, Do-Gun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.684-693
    • /
    • 2012
  • The stormwater runoff from the increasing paved roads and vehicles resulted in the increase in the pollutants load to adjacent water bodies. The granular media filtration facilities are the most widely adopted to minimize the non-point source pollution from motorways. It is essential to consider the severe variation of hydraulic condition, suspended solid (SS) characteristics, and the medium characteristics for stormwater management filter. In this study, different types of media, including sand, were tested and the performance of downflow sand filters was investigated under various linear velocity and influent solid particle size. Results showed that the best medium is the coarse sand with large grain size, which showed the specific SS removal before clogging of more than $8.498kg/m^2$, the SS removal of higher than 95%, and minimum head loss. Linear velocity did not affect the total solid removal, while the performance was improved when fine solid was introduced. It is suggested that the life of a downflow sand filter bed can be extended by deep bed filtration when influent particles are fine. However, the captured particles can be washed out after a long period of operation.

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.

A Study on the Channel Planform Change Using Aerial Photographs and Topographic Map in the Mangyoung River (영상자료를 이용한 만경강 하도변화에 관한 연구)

  • Hong, Il;Kang, Joon-Gu;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.127-136
    • /
    • 2012
  • River is able to change by various environmental factors. In order to conduct river restoration design, it is necessary to evaluate the stable channel through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study was analyzed abandoned channel formation, changes in the vertical-section and cross-section length of rivers, and micro-landform changes etc using an image analysis technique. Purpose of this research is to evaluates the stable channel through a river channel morphology change from past and present river channels image. Mangyoung river was conducted artificial river maintenance through straight channel consolidation form 1920 to 1930 year. In the result river maintenance, mangyoung river length was decreased by 15 km and abandoned channels of six points were made. Since then, weir was continuously increased to control bed slope and use water. Install of weir was to be the reason of changes on channel width, thalweg, vegetated bar, sand bar, water area. Present Mangyoung river show that water area was temporary increased in upper and middle reach because of weir installation. Total sand bar was only decreased in upper channel. The change of vegetated bar and sand bar was slight recently. In this result, Mangyoung river is inferred to reach stabilized channel although there is some difference to the lower reach.

Application of Flood Prevention Measures Using Detailed Topographic Data of River and Lowland (하천-제내지의 상세 지형자료를 이용한 수해방지대책 적용)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KEUM, Ho-Jun;KO, Hyun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2020
  • Recently, the incidence of flooding in Korea has decreased by the measures by central and local governments, however the scale of damage is increasing due to the improvement of living standard. One of the causes of such flood damage is natural causes such as rainfall exceeding the planned frequency of flood control under climate change. In addition, there are artificial causes such as encroachment of river spaces and management problems in upstream basins without consideration of downstream damage potential by regional development flood. In this study, in order to reduce the inundation damage caused by flooding of river, the situation at the time of inundation damage was reproduced by the detailed topographic data and 2D numerical model. Therefore, the effect of preparing various disaster prevention measures for the lowland was simulated in advance so that quantitative evaluation could be achieved. The target area is Taehwa river basin, where flooding was caused by the flooding of river waters caused by typhoon Chaba in October 2016. As a result of rainfall-discharge and two-dimensional analysis, the simulation results agree with the observed in terms of flood depth, flood arrival time and flooded area. This study examined the applicability of hydraulic analysis on river using two-dimensional inundation model, by applying detailed topographic data and it is expected to contribute to establish of disaster prevention measures.