DOI QR코드

DOI QR Code

Application of Flood Prevention Measures Using Detailed Topographic Data of River and Lowland

하천-제내지의 상세 지형자료를 이용한 수해방지대책 적용

  • LEE, Jae-Yeong (Dept. of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • HAN, Kun-Yeun (School of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University) ;
  • KEUM, Ho-Jun (Disaster Prevention Research Division, National Disaster Management Research Institute) ;
  • KO, Hyun-Soo (Dept. of Civil and Environmental Engineering, Ulsan University)
  • 이재영 (한국건설기술연구원 국토보전연구본부) ;
  • 한건연 (경북대학교 건설환경에너지공학부) ;
  • 금호준 (국립재난안전연구원 방재연구실) ;
  • 고현수 (울산대학교 건설환경공학부)
  • Received : 2019.12.31
  • Accepted : 2020.03.02
  • Published : 2020.03.31

Abstract

Recently, the incidence of flooding in Korea has decreased by the measures by central and local governments, however the scale of damage is increasing due to the improvement of living standard. One of the causes of such flood damage is natural causes such as rainfall exceeding the planned frequency of flood control under climate change. In addition, there are artificial causes such as encroachment of river spaces and management problems in upstream basins without consideration of downstream damage potential by regional development flood. In this study, in order to reduce the inundation damage caused by flooding of river, the situation at the time of inundation damage was reproduced by the detailed topographic data and 2D numerical model. Therefore, the effect of preparing various disaster prevention measures for the lowland was simulated in advance so that quantitative evaluation could be achieved. The target area is Taehwa river basin, where flooding was caused by the flooding of river waters caused by typhoon Chaba in October 2016. As a result of rainfall-discharge and two-dimensional analysis, the simulation results agree with the observed in terms of flood depth, flood arrival time and flooded area. This study examined the applicability of hydraulic analysis on river using two-dimensional inundation model, by applying detailed topographic data and it is expected to contribute to establish of disaster prevention measures.

최근 우리나라에서 발생하는 침수피해는 중앙 정부 및 지자체의 치수대책으로 인해 발생빈도는 감소하고 있으나 생활수준의 향상으로 인해 피해규모는 증가하고 있는 추세이다. 이러한 침수피해의 원인으로는 기후변화로 인한 치수시설의 계획빈도를 상회하는 강우와 같은 자연적 원인과 지역 개발에 따른 하천 공간의 잠식, 하류지역의 홍수소통 능력을 고려하지 않은 상류 유역의 관리상 문제 등 인위적인 원인이 있다. 이에 본 연구에서는 하천수의 범람으로 인한 침수피해를 저감시키기 위해 하천-제내지 상세지형을 반영하여 침수피해가 발생한 당시의 상황을 수치모형을 통해 재현함으로써 대상지역의 제내지에 대한 여러 가지 수해방지대책 마련에 대한 효과를 사전에 정량적으로 평가할 수 있도록 하였다. 대상지역은 2016년 10월 태풍 차바로 인한 하천수의 범람으로 침수피해가 발생한 태화강 지방하천 유역으로 강우-유출해석 및 2차원 홍수범람해석을 통해 침수범위와 침수심에 대한 검증을 실시한 결과 침수면적, 홍수도달시간 및 침수심이 모의결과와 유사함을 확인하였다. 본 연구에서는 상세한 지형자료를 적용하여 2차원 홍수범람해석을 실시함으로써 하천수리해석의 적용성을 검토하였으며 수해방지대책 수립에 수치모형을 활용함으로써 홍수방재 및 침수피해 경감에 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. Bradford, S.F. and Sanders, B.F. 2002. Finite-Volume Model for Shallow-Water Flooding of Arbitrary Topography. Journal of Hydraulic Engineering, ASCE, 128(3):289-298 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(289)
  2. FLO-2D Software. 2016. FLO-2D Data Input Manual. p.263
  3. Kim, B.H., Choi, D.J., Lee, J.Y. and Han, K.Y. 2017. Two-dimensional (2D) Flood Inundation Modeling for Safety Assessment in the Waterfront Area. 17(3):319-330 https://doi.org/10.9798/KOSHAM.2017.17.3.319
  4. Lee, E.L. and Kim, S.H. 2006. The Establishment and Application of Hydraulic Channel Routing Model on the Nakdong River (II) Model Application. 8(1):83-96
  5. Lee, J.T., Hur, S.C., Kim, J.H. and Han, K.Y. 2006. Characteristics of the Inundation and Process of Making a Flood Map According to the Levee Break Conditions in Urban Stream. 39(5):383-394 https://doi.org/10.3741/JKWRA.2006.39.5.383
  6. Lee, S.J., Sin, H.H., Kim, J.C. and Hwang, M.H. 2010. Flood Characteristics at Nakdong Estuary with 1 Dimensional Unsteady Model. 19(2):149-155 https://doi.org/10.5322/JES.2010.19.2.149
  7. Liang, Q. Du, G., Hall, J.W. and Borthwick, A.G.L. 2008. Flood Inundation Modeling with and Adaptive Quadtree Grid Shallow Water Equation Solver. Journal of Hydraulic Engineering, ASCE, 134(11):1603-1610 https://doi.org/10.1061/(ASCE)0733-9429(2008)134:11(1603)
  8. Ministry of Construction & Transportation. 2005. Flood Control Ability Improvement Project of Dam. p.459
  9. Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R. and Matgen, P. 2006. Fuzzy Set Approach to Calibrating Distributed Flood Inundation Models Using Remote Sensing Observations. Hydrology and Earth System Sciences Discusstions, 3:2243-2277 https://doi.org/10.5194/hessd-3-2243-2006
  10. Park, S.J., Choi, H.G., Huh, Y.H. and Han, K.Y. 2011. Establishment and Application of 2-Dimensional Flood Inundation Analysis System by the Collaboration of River and Lowland in Nam River Basin. 11(6):237-247 https://doi.org/10.9798/KOSHAM.2011.11.6.237
  11. Sung, J.H., Kim, C.H., Lee, J.H., Won, Y.S. and Shin, W.G. 2015. Provision of Flood Prediction and Information in Waterfront Area 48(1):44-50
  12. Ulsan Metropolitan City. 2009. Taehwa River Basic Plan. p.718
  13. Ulsan Metropolitan City. 2012. Ecological River Development Project for Taehwa River. p.718
  14. Ulsan Metropolitan City. 2017. Analysis of Flood Damage during Typhoon Chaba in Ulju-gun. p.239
  15. US Army Corps of Engineers Hydrologic Engineering Center. 2016. Hydrologic Modeling System HEC-HMS User's Manual. p.598
  16. US Army Corps of Engineers Hydrologic Engineering Center. 2016. HEC-RAS River Analysis System User's Manual. p.960