• Title/Summary/Keyword: Hydraulic Driven

Search Result 204, Processing Time 0.028 seconds

SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

  • Lee, Yeon-Gun;Park, Il-Woong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.347-360
    • /
    • 2013
  • This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA) and the loss-of-feedwater accident (LOFW) in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF), a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

Theoretical Shape Analysis of Continuous Contact Helical Gear for Low Noise Pump (저소음 기어펌프용 연속접촉 헬리컬기어의 형상 설계에 관한 연구)

  • Kim, Kaptae;Shin, Soosik;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.58-66
    • /
    • 2018
  • The use of external gear pumps is an effective way to achieve adequate performance at low cost when composing hydraulic systems. The biggest drawback, on the other hand, is the accompanying noise. Gears of continuous contact shape are actively used for the pump recently. The continuous contact shape must be the helical type due to the nature of the gear pump that is driven only by the drive gear. In this paper the theoretical shape of continuous contact gear is analyzed using simple rack shape of straight lines and two circular arcs. Using such geometry, the theoretical equation will be developed by envelope curves according to the conjugate gear shape rules. After checking the validity of the theory by the shape of gear rules, the grinding shape was also developed. The 3D shapes using equation can be also drawn. It was also shown that contact ratio and radius of curvature are easily developed by the theoretical equations.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

A Study on Combustion Characteristics of Non-Circular Grain in Hybrid Rocket for RATO (Rocket-Assisted Take Off) System (RATO(Rocket-Assisted Take Off) 시스템 적용을 위한 하이브리드 로켓 비단공형 연료 그레인 기초 연소특성 연구)

  • Su Jin Kim;Su Han Ko;Sul Hee Kim;Gyeong Mo Kim;Seong Geun Lee;Ye Chan Han;Hee Jang Moon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • In an attempt to apply hybrid rocket to the RATO (Rocket-Assisted Take Off) system, combustion characteristics of the non-circular grain were figured out in this study. Having larger combustion area, it was reconfirmed that the non-circular grain has advantages over regression rate, characteristic velocity and chamber pressure in which all gave higher values. Experiments were performed to understand the effect of the non-circular grain geometry over time where local regression rates depending on grain location were analyzed. It was found that the regression rate of five distinct locations were different. Partial conclusion driven was that these differences are due to the heat transfer caused by dissimilar distances from the flame layer. Besides, as combustion duration increased, the fuel port became circular, and the regression rate converged to a single value over the whole grain.

Design and Implementation of a Data-Driven Defect and Linearity Assessment Monitoring System for Electric Power Steering (전동식 파워 스티어링을 위한 데이터 기반 결함 및 선형성 평가 모니터링 시스템의 설계 구현)

  • Lawal Alabe Wale;Kimleang Kea;Youngsun Han;Tea-Kyung Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.61-69
    • /
    • 2023
  • In recent years, due to heightened environmental awareness, Electric Power Steering (EPS) has been increasingly adopted as the steering control unit in manufactured vehicles. This has had numerous benefits, such as improved steering power, elimination of hydraulic hose leaks and reduced fuel consumption. However, for EPS systems to respond to actions, sensors must be employed; this means that the consistency of the sensor's linear variation is integral to the stability of the steering response. To ensure quality control, a reliable method for detecting defects and assessing linearity is required to assess the sensitivity of the EPS sensor to changes in the internal design characters. This paper proposes a data-driven defect and linearity assessment monitoring system, which can be used to analyze EPS component defects and linearity based on vehicle speed interval division. The approach is validated experimentally using data collected from an EPS test jig and is further enhanced by the inclusion of a Graphical User Interface (GUI). Based on the design, the developed system effectively performs defect detection with an accuracy of 0.99 percent and obtains a linearity assessment score at varying vehicle speeds.

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Numerical analysis of dam breaking problem using SPH (제체의 갑작스런 붕괴로 인한 충격파 수치해석 - SPH (Smoothed Particle Hydrodynamics)를 중심으로)

  • Cho, Yong Jun;Kim, Gweon Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.261-270
    • /
    • 2008
  • Even though there is a great deal of progress in a numerical method of high caliber like SPH, it is very rarely deployed in a water resources community. Despite the great stride in computing environment, depth averaged approach like a nonlinear shallow equation is still efficient tool for flood routing in large watershed, but it can give some misleading information like the inundation height of flood. In this rationale, we numerically simulate the flow into the dry channel, dry channel with an obstacle triggered by the collapse of a two dimensional water column using SPH (Smoothed Particle Hydrodynamics) in order to boost the application of numerical method of high caliber like SPH in a water resources community. As a most severe test of the robustness of SPH, we also carry out the simulation of the flow through a clearance into the wet channel driven by the rapid removal of a water gate. As a hydrodynamic model, we used the Navier-Stokes equation, a numerical integration of which was carried out using SPH. To verify the validity of newly proposed numerical model, we compare the numerically simulated flow with the others in the literature mainly from VOF and MAC, and hydraulic experiments by Martin and Moyce (1952), Koshizuka et al. (1995) and Janosi et al. (2004). It was shown that agreements between the numerical results in this study and hydraulic experiments are remarkable.

Rheological Characteristics of ER Fluids at High Pressure-Driven Flow Mode (높은 압력차의 유동모드 하에서 ER유체의 유변특성)

  • 이호근;최승복;정재천;강윤수;서문석
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • This paper experimentally investigates the steady shear behaviors of electro-rheological(ER) fluids under flow mode at high pressure level. As for the ER fluid to be tested, two types of ER fluids are employed; water-based ER fluids (ERF 1, ERF 2) and water-free ER fluid(ERF 3). The water-based ER fluids are composed inhousingly, and the concentrations of dispersed particles are 20 wt% and 30 wt% for ERF 1 and ERF 2, respectively. To generate the flow mode at high pressure, an experimental apparatus operated by two-way hydraulic cylinder is constructed and utilized. The pressure difference is measured by the pressure sensor, while the flow rate is calculated using the measured data of the displacement sensor(LVDT). Consequently, the shear stress and shear rate are distilled by incorporating the measured data; the pressure difference and the flow rate.

  • PDF

Characteristics of Behavior of Brain Board - driven Clay Layers by Vacuum Loading (진공하중에 의한 Drain Board 타입 점토지반의 거동 특성)

  • Lee, Song;Yang, Tae-Seon;Park, Jong-Chan;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-58
    • /
    • 1993
  • Paper drain method is one of the methods used for the improvement of soft clay as hydraulic fill sites or the seaside industrial complex. This method adopts a card board as the drain materials instead of sand piles in sand drain method. In this paper 3 types of drain board are used to fond out the characteristics of consolidation by vacuum consolidation model test. So does the no drain board test. This test causes the reduction of pore water pressure to promote the settlement without change of ground water level. Conclusively, the vacuum consolidation shows 3-dimensional behaviors and pore water pressure reaches a negative value in a short time. In addition, it is expected to have a comparatively good consolidation effect using non -woven board, and vacuum loading results in increasing the shear strength at the bottom and top of call layers.

  • PDF

A Feasibility Study on Shale Gas Plant Water Treatment by Direct Contact Membrane Distillation (셰일가스 플랜트 용수 처리를 위한 직접 접촉 막 증발법 적용 가능성 연구)

  • Koo, Jae-Wuk;Han, Jihee;Lee, Sangho;Hong, Seungkwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.56-60
    • /
    • 2013
  • Non-conventional oil resources such as shale gas are becoming increasingly important and have drawn the attention of several major oil companies all over the world. Nevertheless, the market-changing growth of shale gas production in recent years has resulted in the emergence of environmental and water management challenges. This is because the water used in the hydraulic fracturing process contains large amount of pollutants including ions, organics, and particles. Accordingly, the treatment of this flowback water from shale gas plant is regarded as one of the key technologies. In this study, we examined the feasibility of membrane distillation as a treatment technology for the water from shale gas plants. Direct contact membrane distillation (DCMD) is a thermally-driven process based on a vaper pressure gradient across a hydrophobic membrane, allowing the treatment of feed waters containing high concentration of ions. Experiments were carried out put in the lab-scale under various conditions such as membrane types, temperature difference, flow rate and so on. Synthetic feed water was prepared and used based on the data from literature. The results indicated that DCMD is suitable for treating not only low-range flowback water but also high-range flowback water. Based on the theoretical calculation, DCMD could have over 80% of recovery. Nevertheless, organic pollutants such as oil and surfactant were identified as serious barriers for the application of MD. Further works will be required to develop the optimum pretreatment for this MD process.