• Title/Summary/Keyword: Hydraulic Driven

Search Result 204, Processing Time 0.025 seconds

Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER (혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구)

  • Park, Yeon-Ha;Hwang, Do Hyun;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • The domestic innovative power reactor named iPOWER will employ the passive molten corium cooling system(PMCCS) to cool down and stabilize the core melt in the severe accident. The final design concept of the PMCCS is yet to be determined, but the in-vessel retention through external reactor vessel cooling has been also considered as a viable strategy to cope with the severe accident. In this study, the two-phase natural circulation flow established between the reactor vessel and the insulation was simulated using a thermal-hydraulic system code, MARS-KS. The flow path of cooling water was modeled with one-dimensional nodes, and the boundary condition of the heat load from the molten core was defined to estimate the naturally-driven flow rate. The evolution of major thermal-hydraulic parameters were also evaluated, including the temperature and the level of cooling water, the void fraction around the lower head of the reactor vessel, and the heat transfer mode on its external surface.

A Study on the Characteristic of Contact Pressure for CPB (Cold Pad Batch) Padder Roll Controlled by Hydraulic Single Cell (단일 유압 Cell로 제어되는 CPB(Cold Pad Batch)용 패더롤의 접촉압력 특성 연구)

  • Cho, Kyung-Chul;Lee, Eun-Ha;Jo, Soon-Ok;Park, Si-Woo;Hwang, Youn-Sung;Kim, Soo-Youn
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.86-96
    • /
    • 2017
  • To make uniform pressure distributed over the contact surface was necessary to cold pad batch dyeing machine. In this study, to confirm characteristic of flexibility and the contact pressure distribution through experimental analysis of padder roll were controlled by hydraulic cell. When there were no load pressure only inner pressure, the value of displacement in the center of padder were greater than the end of the padder. The results of this study showed that the padder had the optimum value of inner pressure for uniform contact pressure distribution. Measuring the contact pressure in a padder system were driven by using a pre-scale film. Uniform contact pressure distribution of cell padder were a linearly with load pressure and inner pressure. When the load pressure was less than 8 tons, the inner pressure for the uniform contact pressure was 1~4 bar. The padder roll performance curves proposed in this study were available for practical production environments and various roll designs.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Automation of Longline -Automation of the Alaska Pollack Longline- (주낙어구의 자동화 -명태주낙어업의 자동화-)

  • KO Kwan-Soh;YOON Gab-Dong;LEE Chun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.2
    • /
    • pp.106-113
    • /
    • 1987
  • The Alaska pollack longline operations, which consist of baiting, shooting, hauling and arrangement of hooks, are dependant on manual labour up to the present. The automation against this traditional way is necessary to eliminate the manual operations and to reduce crew. We have developed a prototype longline system suitable for Alaska pollack longline gear, which is composed of an automatic baiting machine, an automatic line hauler, a hook cleaner and storage rails. The automatic bailing machine driven by hydraulic power is precise baiting method controlled sequentially, and the automatic line hauler is to haul up the mainline by means of hydraulic power and at the same time to split every hook and to carry it onto storage rail automatically. A series functioning tests on shooting and hauling apparatus were carried out in the laboratory and at sea. The results obtained are as follows ; 1. As for the baiting machine, the exciting time of solenoid which operates a directional valve, bait feeding and cutting time, is shortened according to the increase of pressure, and also, after cutting the bait, the over-rotated angle of the blade increased in accordance with the increase of pressure. 2. The baiting efficiency is about $90\%$ when using sand lance (Hypoptychus dybowskii), and the most proper pressure of the hydraulic circuit in feeding and cutting the bait is between $13\;kgf/cm^2\;and\;20\;kgf/cm^2$. 3. The hook splitting rate of the automatic line hauler is about $95.5\%$ regardless of hauling speed and materials of snood. 4. The case of unseparating hook is appeared when the snood gets entangled or the hook is sticked in the mainline.

  • PDF

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES (비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법)

  • Lee, H.D.;Jeong, J.J.;Cho, H.K.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.

Performance Analysis of Plate-and-Frame Forward Osmosis Membrane Module for Concentrating High Salinity Wastewater (고염도 폐수 농축을 위한 평판형 정삼투막 모듈의 성능 분석)

  • Kim, Yu Chang;Lee, Sungyun;Park, Sang-Jin;Kim, Han Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.68-74
    • /
    • 2016
  • Hydraulic fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates larger volumes of contaminated wastewater with high salinity. It is critical to treat and reuse the O&G wastewater in a cost-effective and environmentally sound manner for sustainable industrial development and for meeting stringent regulations. Recently, forward osmosis (FO) has been examined if it is a promising solution for treatment and desalination of complex industrial streams and especially fracturing flowback and produced waters. In the present study, the performances of a plate-and-frame FO membrane element and a module (6 elements combined in series) were investigated for concentrating high TDS wastewater. An FO module has achieved up to 64 % water recovery (i.e., concentration factor of 2.76) from 10,000 ppm wastewaters and can concentrate feed streams salinities to greater than 30,500 ppm.

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

Theoretical Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 이론적 연구)

  • Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%. If 20% of the undisturbed energy flux is extracted, the flow speed is reduced by 11.3%. The simple channel also suggests that extractable energy might be higher if flow speed reductions are considered acceptable.

Development of a Piecewise Bendable Switch System for the Urban Transit MagLev(I) (도시형 자기부상열차용 굴절형 분기장치의 개발(I))

  • Lee, Jong-Min;Jo, Heung-Je;Kim, In-Geun
    • 연구논문집
    • /
    • s.29
    • /
    • pp.57-67
    • /
    • 1999
  • This paper presents the status quo of the development of a piecewise bendable switch system for the urban transit MagLev. MagLev system as well as railroad requires switch systems to reach its destination. Requirements of the switch system for commercial lines are high speed operation satisfying about 2-3 minute headway and system reliability, etc. Parallel moving type switch system was installed on the test track of urban transit MagLev in KIMM. In this system, switch operation from one position to another can be done in about 90 seconds. Therefore, we concluded that this system can not satisfy the headway for the commercial lines. We decided to develop a high speed piecewise bendable switch system in which switching can be done in 20 seconds. Designed switch system is very complicated in view of operating mechanism. It consists of 11 segmented girder beams driven by hydraulic cylinders. To gain the idea of a piecewise bendable switch system, we manufactured and tested a 1/5 scale switch model. We are going to construct a full scale piecewise bendable switch system next year.

  • PDF