• Title/Summary/Keyword: Hydraulic Crane

Search Result 42, Processing Time 0.026 seconds

The Effect of Impact Absorbing System Deformation According to the Variation of Cylinder Wall Dimensions on Damping Coefficient (실린더 벽면 치수변화에 따른 변형이 충격흡수장치 감쇠계수에 미치는 영향)

  • 한근조;안찬우;안성찬;심재준;김성윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.765-768
    • /
    • 1997
  • Many malfunctions take place in container crane spreader due to impact. So we designed a hydraulic impact absorbing equipment to absorb the impact and we studied the change of damping coefficient with respect to the variation of dimensions of oil-cylinder wall. When we design the dimension of hydraulic cylinder wall considering the displacement on the wall, the value of it over 20mm didn't affect the damping coefficient.

  • PDF

HA Study on the Selection of Mobile Crane Model for Heavy Equipments Installation (중량물 설치 시 이동식 크레인 기종선정에 관한 연구)

  • Jeong, Jae-Bok;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.8 no.2
    • /
    • pp.59-69
    • /
    • 2012
  • This study focuses on avoiding the failures from the wrong selections by experiences as simulation programs is not available, and suggests the methods which effectively select the alternatives when the selected model is not appropriate for the original plan. First, CC8800-1K of DEMAG has the longest boom whose length is 216 m at the maximum. The combination of the boom is feasible to second level except for MANITIWOC M 2250 (M-1200 RINGER) which is possible to third level. Second, the angle of boom is from 20 degrees to 82 degrees. Suitable angle to work is in the 55-78 degrees. The working load of crawler type and hydraulic one to be applied is 75-85% in the critical loads capacity. As increasing operating radius, crawler type is a favorable position over hydraulic one. Lastly, related problems were verified through examination by suggestions for the design of the selection methods for the case analysis. The major problems are stemming from the selection based on its experiences, unreasonable demand for the existing facility and repeated selections by the designer who accumulates his experiences via same or similar projects.

  • PDF

Impact Analysis Using Shock Absorbing System For Spreader (스프레더용 충격흡수장치를 통한 충격해석)

  • 김성윤;한동섭;심재준;한근조;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.745-748
    • /
    • 2002
  • Many malfunctions take place in container crane spreader due to impact. So we designed a 2DOF hydraulic impact absorbing system and studied the change of impulse with respect to the variation of falling height and weight. The falling height becomes higher than 1m and the falling weight goes up heavier than 100kg, the impact absorbing rate was lower. When spreader is bumped against container and impulse force concentrates on one point, impact absorbing equipment would not be operated properly and make some trouble.

  • PDF

객체지향 기법을 이용한 다관절 크레인의 유압 시스템 시뮬레이션

  • 김문기;심영보;장명수;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.751-755
    • /
    • 1995
  • It become more difficult to anticipate the performance of fluid power systems as the number of components increases because of nonlinearrities inherent in hydraulic components. In this situation, the computer simulation technique can be an effective tool in the analysis and design of fluid power systems. In this paper, simulation results are presented for dynamic characteriatics of a knuckle crane. Simple models for hydraulic components and relatively detailed motion equations for attachments are used. the simulation reaults are very close to those of experiments. The simulation is performed using a simulation package developed with object-oriented method. This package provides the encironment that user can construct desirct desired circuits form the component library, checks the continuity and compatibility conditions automatically and executes simulation

  • PDF

A Study on Stability of Excavator using ZMP (ZMP를 이용한 굴삭기의 안정성에 관한 연구)

  • Choi, Jong-Hwan;Um, Hyuk;Lim, Tae-Hyeong;Kim, Sung-Su;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.86-92
    • /
    • 2003
  • The hydraulic excavator has been a popular research object for automation because of its multi-workings and economic efficiency. When it works crane tasks, most of disasters happen. The stability of the excavator having crane function has a close relation with excavators posture, motion and load. In this paper, the stability of tipping-over has been analysed using zero Moment point(ZMP)

  • PDF

Impact Analysis For a 2-DOF Shock Absorbing System with Multi-Step Damping Coefficient (다단계 감쇠계수를 갖는 2자유도계 충격흡수장치의 충격해석)

  • 김성윤;심재준;한동섭;안성찬;한근조;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.871-874
    • /
    • 2002
  • Many malfunctions take place in container crane spreader due to impact. So we designed a 2DOF hydraulic impact absorbing system with multi-step damping coefficient and studied the effect of orifice's interval and damping coefficient. The damping coefficient of upper piston was found to be 180 N.s/m, and the orifice's interval to be 9mm, the max reaction force and the average reaction force might be lowest. Compared with a general 2-DOF impact absorbing system, the max reaction force reduced by 46%., and average reaction force reduced by 5%.

  • PDF

Performance Evaluation of Hydraulic and Magnetic Clamp Crane for Transporting Curved Steel Plate for Shipbuilding, with Permanent Magnet Applied (영구자석을 적용한 선박용 곡면 철판 이송용 유압식 마그네틱 클램프 이송장치의 성능평가에 대한 고찰)

  • Moon, Byung Young;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.322-330
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was developed to realize a magnetic clamp crane system by simultaneously actuating eight individual hydraulic cylinders. In this approach, an Sr-type of ferritic permanent magnet (SrO· 6Fe2O3), rather than the previous electromagnet, was utilized for the purpose of lifting and transporting the large curved steel plates used for manufacturing ships. This study had the goal of developing and manufacturing a hydraulic, magnetic clamp prototype composed of three main parts, including the base frame, cylinder joint, and magnet joint, in order to safely transport curved steel plates. Furthermore, this research included a performance evaluation of the manufactured prototype and acquired the purposed quantity value in the performance test. The most significant item, the magnetic adhesive force (G), was evaluated in a performance test, which utilized a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc). In particular, relevant items such as the hoist tension (kN), transportation time (s), and applied load (Kgf) on the hydraulic cylinders were also evaluated in order to determine the optimum values.

The Effect of Impact Absorbing System with 2 DOF Deformation According to the Variation of Cylinder Wall on Damping Coefficient (실린더 벽면 변화가 2자유도계 충격흡수장치의 감쇠계수에 미치는 영향)

  • Han, Geun-Jo;Ahn, Chan-Woo;Ahn, Sung-Chan;Shim, Jae-Joon;Kim, Sung-Youn
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.101-105
    • /
    • 2002
  • Many malfunction take place in container crane spreader due to impact. So we designed a 2 DOF hydraulic impact absorbing equipment to absorb the impact and we studied the change of damping coefficient with respect to the variation of dimensions of oil-Cylinder wail. When we design the dimension of hydraulic cylinder wall considering the displacement on the wall, the value of it over 20m didn't affect the damping coefficient.

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Drive Performance Analysis of Climbing Hydraulic Robots System for Construction Automation (시공자동화를 위한 크라이밍 유압시스템의 구동성능 분석)

  • Kang, Go-Une;Lee, Myung-Do;Lee, Kyu-Won;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.33-36
    • /
    • 2010
  • The attention in construction Automation is getting higher since it could be the answer to the lack of skilled labor by decrease in construction population and aging which adversely affects productivity and quality in the construction site. We are on the way to develop a construction automation system adequate for domestic circumstances in Korea; it is called RCA(Robotic-crane based Construction Automation)system. Climbing hydraulic robots system is a part of RCA system and makes Construction factory(CF) climb through the guide rail on the core wall. The safety of climbing hydraulic robots system is at issue due to the overloaded weight of CF. Preventing this issue, present study did the design verification through the structural analysis and the simulation. Mock-up test also was done to analyze the drive performance of climbing hydraulic robots system.

  • PDF