• Title/Summary/Keyword: Hydraulic Control Valve

Search Result 412, Processing Time 0.024 seconds

Position Control of an Electro-hydraulic Servo System with Disturbance (외란을 갖는 전기유압 서보시스템의 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In a hydraulic control system, since a hydraulic cylinder drives a relatively large mass of an object, an external load force acts as a disturbance on the control performance of the system. Additionally, as the hydraulic system is used for a long period, there are disturbances that occur gradually, such as a drop in supply pressure because of abrasion of the pump, oil leakage from a valve, and oil leakage from a cylinder. In this study, a state feedback controller based on a linearization technique is applied. To prevent the performance degradation of the controller from the load disturbance, an Extended Luenberger observer (ELO) is used for the Extended system. The case of using the proportional controller, which is a representative linear controller, and the result of using the controller designed in this study are compared and reviewed through simulation. Also, we propose an experimental gain-setting method for a state feedback controller that can be used at industrial sites, and examine how the stability and control performance of the system changes because of the disturbance inputs through the experimental results.

Flow Rate Control System Design for the Industrial Valve (산업용 밸브의 유량제어 시스템 설계)

  • Choi, Jeongju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.387-392
    • /
    • 2020
  • This paper proposes a flow-rate control system for industrial valves. Industrial valves are used in piping systems to control the flow rate and pressure. In general, valves used in pipelines are classified into globe valves, butterfly valves, and ball valves according to the shape. Motor, hydraulic, and pneumatic systems are used for operating valves. The flow meter should measure the flow rate when configuring the flow-rate control system. On the other hand, because the flow rate of the valve can be expressed by flow coefficient, a control scheme is proposed using the pressure deviation, which measures at the front and rear of the valve. The transfer function for the valve, according to the control input, was estimated using the signal compression method. Based on the induced transfer function, the disturbance observer was designed to improve the command following the performance of the valve stem. The performance of the proposed control method is compared with the flow-rate control result using the flow meter used.

Feedback linearization of the electro-hydraulic velocity control system (전기유압 속도제어 시스템의 귀환 선형화 제어)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1116-1121
    • /
    • 1991
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the Implementation of the digital state feedback controller is studied. The C.inf. nonlinear transformation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation Is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed method In this paper is easier to implement than other proposed methods and it is possible to control in real tine. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful.

  • PDF

Development of a Virtual Excavator using SimMechanics and SimHydraulic (SimMechanics SimHydraulic을 이용한 가상 굴삭기 개발)

  • Le, Q.H.;Jeong, Y.M.;Nguyen, C.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • Excavation is an important work in mining, earth removal and general earthworks. Nowadays, automation in excavator has been studied by several researchers. In the excavator research methods, simulation is one of the low cost methods for applied to test safely. In this paper, designed a virtual hydraulic excavator that with the control and the dynamic. At first, the simulation of hydraulic system for excavator's attachment such as boom, arm and bucket using Matlab/Simhydraulic is presented. Second, the dynamic model of excavator is distributed to combine with the hydraulic system. For controlling this system, electric joysticks are used to operate the orifice open areas in Main Control Valve. The simulation result is described to analysis the performance of this virtual excavator.

Improving Hydraulic System Design by Analysis Model of a Self-propelled Spinach Harvester (자주식 시금치 수확장치 해석모델을 활용한 유압시스템 개선 설계 제안)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • This study aimed to develop solutions for the intermittent performance deterioration of self-propelled spinach harvesters through analysis model. The study was conducted in the following manner. First, changes in performance deterioration and surplus flow, which result from oil temperature changes, were analyzed by simulating actual sequential harvesting movements, which involve driving with actuators operated simultaneously, by analysis model developed in a previous study. Second, fundamental solutions for surplus flow problems were presented. Third, the solutions were applied to a virtual environment to present their practicality and quantitative effects. The two solutions based on the study results were as follows. First, a closed center-type directional control valve was applied to the hydraulic circuit. Second, an unloading system was set up through an on-off solenoid valve.

Development of Remote Valve Control System with Power Line Communication (전력선 통신 및 제어기능을 구비한 원격 밸브 제어시스템 개발)

  • Moon, Hyeong-Soon;Kim, Jong-Cheol;Lee, Byeong-Yeol;Kim, Yong-Baek;Kim, Jee-On
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.71-79
    • /
    • 2009
  • The world-wide ship construction market is forecast that the considerable portion of shipbuilding and oceanic plant industry will be transferred consequently in China after 5 or 10 years. This point of view where the Korean ship construction industry seizes the initiative from the world-wide ship construction/oceanic field, we must cultivate technical power of base technology, and focus our interests on the development of core parts. In this study, our proprietary remotely operated valve actuator system with power line technology was developed to enhance the installation and commissioning process by our own technology. This paper describes the new design and functions of the remotely operated valve system for shipbuilding and offshore market especially for FPSO.

  • PDF

Influence of valve plate configuration on torque ripple of a bi-directional bent-axis type hydraulic piston pump (양방향 회전형 사축식 유압 피스톤 펌프의 벨브 플레이트 형상이 토크 맥동에 주는 영향)

  • Kim, Sung-Hun;Hong, Yeh-Sun;Kim, Doo-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.231-237
    • /
    • 2007
  • The torque ripple of the hydraulic pumps for the Electro-hydrostatic Actuators can disturb the cylinder position control under slewing speed operation condition. In principle, the periodic change of the reaction torque generated by a piston type pump is highly dependent on the waveform of its cylinder chamber pressure. In case of uni-directional pumps operating at constant speed, the transient overshoot and rising slope of the cylinder pressure can be adjusted by the precompression angle and notch shape of their valve plates. Therefore, the influence of the valve plate geometry on the torque ripple magnitude of a bent-axis type piston pump for EHA application was investigated in this study. The results showed that any improvement of the torque ripple of such a bi-directional pump can not be achieved by modifying the valve plate geometry, regardless of its operation speed.