• Title/Summary/Keyword: Hydraulic Control System

Search Result 1,177, Processing Time 0.021 seconds

Improvement of Transient Response Charateristics of a Position Control Hydraulic Servosystem Using Observer (I) (관측기를 이용한 위치제어 유압 서어보 시스템의 과도응답 특성 개선 (I))

  • 이교일;조승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.781-788
    • /
    • 1987
  • The state variables estimated in an observer were useed in feedback control of a hydraulic servosystem to increase the system stability and to enhance the system performance. The nonlinear hydraulic servosystem with the inherent nonlinearities due to the square root function of flow equation, the Coulomb friction and so on, was modelled as a fourth order linear hydraulic servosystem. Also, a second order linear system was derived for the observer-controller design. For these models, a fourth order linear observer and a second order linear observer were constructed respectively to evaluate the performance of the observer-based hydraulic servosystem. The results obtained from series of simulation showed that the system which had shown oscillatory phenomenon under proportional control became stable with the same maximum acceleration and velocity that it had started under proportional control.

Dynamic Behavior of a Symmetric Cylinder Type Hydraulic Damper for Semi-Active Control (반능동 제어용 대칭 실린더형 유압 감쇠기의 동적 거동)

  • Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • For the dynamic behavior evaluation of a semi-active vibration control system, it is very important to use an accurate mathematical model for the hydraulic damper applied to the control system. In this study, a mathematical model for a symmetric type hydraulic damper was suggested. In this model, the effects of gas volume and oil temperature variation on the bulk modulus of oil were considered. The dynamic behavior of the damper was investigated by experiments and simulations. It was confirmed that the pressure variation, damping force, and mean pressure variation could be estimated with comparatively good precision by the suggested mathematical model. Moreover, it was shown that excessive pressure rise can be generated by the oil expansion due to the heat energy transformed from the exciting energy of the damper for a short period of the damper operation.

  • PDF

A Study on the Control of Electro-Hydraulic Motors Using Ahead Predictive Adaptive Control Method (예측 적응제어 기법을 이용한 전기 유압 모터의 제어에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1360-1365
    • /
    • 2011
  • Electro-hydraulic servo motor is used to a lot of in the field of industrial equipment which requires one of the control functions among pressure, flow, and power output. In this paper, linear discrete reference model of the electro-hydraulic servo motor system are made for 1-step ahead predictive control. The parameters of electro-hydraulic servo motor system are estimated using the recursive least square method. 1-step ahead predictive model output of electro-hydraulic servo motor system corresponded to reference model output in spite of estimated parameters are not meet real parameters. Control performance affections are studied due to the forgetting factors variation.

An Experimental Study on the Performance Evaluation Method of Padder Roll by Hydraulic Multi Cell with Acceleration Test (유압제어식 멀티셀 패더롤의 가속시험을 통한 성능평가 기법 연구)

  • Cho, Kyung Chul;Lee, Eun Ha;Park, Si Woo;Kim, Soo Youn
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.43-48
    • /
    • 2018
  • The hydraulic control valve, used in the CPB (cold-pad-Batch) cold dyeing system, passes through a pressurized material that absorbs the dye. The hydraulic control of the hydraulic control panel shall be driven in a uniform and precisely controlled manner, as it interferes directly with the dyschromatism. In this study, an acceleration test model was employed to verify the durability of the hydraulic control of the hydraulic control panel, which was manufactured by the scenic model, and the pre-roll angle was analyzed before the performance of acceleration test. Based on the change in the amount of deformation of the padder roll the durability of the padder roll was analyzed along with verification of the durability of the skin and the rubber coating in contact with the fabric. Furthermore, the accelerated test method used for hydraulic controlled multi-cell padder rolls was verified.

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, In-Soo;Kim, Yeung-Shik;Kim, Ki-Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.729-735
    • /
    • 2012
  • A LQG/LTR(linear quadratic Gaussian/loop transfer recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, Ki-Bum;Kim, Yeung-Shik;Kim, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.614-619
    • /
    • 2012
  • A LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

  • PDF

A Study on PWM Control of an Electro-Hydraulic Servo Indexing System (전기유압식 서보인덱싱 시스템의 PWM 제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 1999
  • This study deals with the application of high speed on-off valves to an electro-hydraulic servo indexing system incorporated electro-hydraulic servo valces. Comparing with the electro-hydraulic servo valve the high speed on-off valve has some merits. Which included low price robustness to the oil contamination and dircect control without D/A converter. The considered sys-tem of this study is controlled by pulse width modulation(PWM) of the control law which is pro-duced by a PID controller which is used broadly in industrial equipments. The dynamic character-istics corresponding to variations of system parameters such as inertia moment system gain and supply pressure are investigated by computer simulation and experiment. Consequently the availability of the application of high speed on-off valve to servo indexing system instead of electro-hydraulic servo valve is confirmed.

  • PDF

A Study on the Position Control of an Electro-Hydraulic Servomechanism Using Variable Structure System (가변구조를 이용한 전기-유압서보계의 위치제어에 관한 연구)

  • 허준영;권기수;하석홍;조겸래;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 1989
  • This paper describes the application of the variable structure control(VSC) concept for the position control of an electro-hydraulic servomotor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state space with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems. The control scheme is derived, implemented and tested in the laboratory where analog controller have been used to control the representive servosystem. The control system schematics are given and simple results are shown for illustration. And the results of variable structure system for the electro-hydraulic servomotor were compared to that of the fixed structure system when load disturbance and system parameter variation exists.

브러시리스 직류모터 방식 EMDP의 구동을 위한 제어시스템 설계

  • Lee, Hee-Joong;Park, Moon-Su;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.162-170
    • /
    • 2005
  • In KSLV-I, actuation system for thrust vector control of kick motor was configured as electro-hydraulic servo actuation system and consisted of actuators, hydraulic power supply system, hydraulic power distribution system and control system. In case of hydraulic power supply system, we use EMDP(Electric Motor Driven Pump) to supply hydraulic power. Generally, we use brushed DC motor for EMDP but it is not easy to operate EMDP using brushed DC motor at a high altitude. Hence, we are developing EMDP using brushless DC motor to use at a high altitude. In this study, we will explain control system for BLDC motor to drive hydraulic pump.

  • PDF

The Characteristic Analysis of the Load-sensitive Hydraulic Control System for Closed Center Type of a Wheel Loader (휠 로더용 폐회로형 부하 감응 유압 제어 시스템의 특성 해석)

  • Lee, Seung-Hyun;Song, Chang-Seop;Chung, Chun-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.934-942
    • /
    • 2007
  • In this study, the characteristics of the load-sensitive hydraulic control system for closed center type of a wheel loader were analyzed using developed analysis program based on Amesim tool. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the system parameter effects on the controllable region and the pump pressure and load pressure variations were studied. The results were compared with the experimental ones. The results and discussions of the present paper could aid in the design of a load-sensitive hydraulic control system for closed center type.