• Title/Summary/Keyword: Hydraulic Control System

Search Result 1,181, Processing Time 0.024 seconds

Design, Modeling and Analysis of a PEM Fuel Cell Excavator with Supercapacitor/Battery Hybrid Power Source

  • Dang, Tri Dung;Do, Tri Cuong;Truong, Hoai Vu Anh;Ho, Cong Minh;Dao, Hoang Vu;Xiao, Yu Ying;Jeong, EunJin;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • The objective of this study was to design and model the PEM fuel cell excavator with supercapacitor/battery hybrid power source to increase efficiency as well as eliminate greenhouse gas emission. With this configuration, the system can get rid of the internal combustion engine, which has a low efficiency and high emission. For the analysis and simulation, the governing equations of the PEM system, the supercapacitor and battery were derived. These simulations were performed in MATLAB/Simulink environment. The hydraulic modeling of the excavator was also presented, and its model implemented in AMESim and studied. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software. The simulation results were presented to show the performance of the system.

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

Dynamic Response of Hydraulic Characteristics in the Inner Saemankeum Reservoir According to Gate Operation and Flood Events (홍수전파와 배수갑문 운영에 따른 새만금호 내부 수리특성의 동적응답)

  • Suh, Seung-Won;Cho, Wan-Hei
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.269-279
    • /
    • 2005
  • Numerical simulations were done using depth integrated ADCIRC model in order to evaluate dynamic response on the inner Saemankeum reservoir due to flood flow and gate operation for the both situations of dike construction and inner development. According to 2-dimensional dynamic flood routing, temporal variation of hydrographs shows sensitive at upstream riverine region while it becomes stable from the center part of the reservoir due to sudden expansion of physical changes. Dynamic response of hydraulic changes such as water surface elevation and velocity on the inner region arises suddenly by gate operation and more rapidly after the inner development than dike construction. Temporal surface fluctuation arises during inflowging of outer sea water and propagates upstream up to 10km to 16km in accordance with inner development status.

Transparent Manipulators Accomplished with RGB-D Sensor, AR Marker, and Color Correction Algorithm (RGB-D 센서, AR 마커, 색수정 알고리즘을 활용한 매니퓰레이터 투명화)

  • Kim, Dong Yeop;Kim, Young Jee;Son, Hyunsik;Hwang, Jung-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.293-300
    • /
    • 2020
  • The purpose of our sensor system is to transparentize the large hydraulic manipulators of a six-ton dual arm excavator from the operator camera view. Almost 40% of the camera view is blocked by the manipulators. In other words, the operator loses 40% of visual information which might be useful for many manipulator control scenarios such as clearing debris on a disaster site. The proposed method is based on a 3D reconstruction technology. By overlaying the camera image from front top of the cabin with the point cloud data from RGB-D (red, green, blue and depth) cameras placed at the outer side of each manipulator, the manipulator-free camera image can be obtained. Two additional algorithms are proposed to further enhance the productivity of dual arm excavators. First, a color correction algorithm is proposed to cope with the different color distribution of the RGB and RGB-D sensors used on the system. Also, the edge overlay algorithm is proposed. Although the manipulators often limit the operator's view, the visual feedback of the manipulator's configurations or states may be useful to the operator. Thus, the overlay algorithm is proposed to show the edge of the manipulators on the camera image. The experimental results show that the proposed transparentization algorithm helps the operator get information about the environment and objects around the excavator.

Piecewise exact solution for analysis of base-isolated structures under earthquakes

  • Tsai, C.S.;Chiang, Tsu-Cheng;Chen, Bo-Jen;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.381-399
    • /
    • 2005
  • Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.

An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation

  • Wang, Zhen;Xu, Guoshan;Li, Qiang;Wu, Bin
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.569-580
    • /
    • 2020
  • The identification of delays and delay compensation are critical problems in real-time hybrid simulations (RTHS). Conventional delay compensation methods are mostly based on the assumption of a constant delay. However, the system delay may vary during tests owing to the nonlinearity of the loading system and/or the behavioral variations of the specimen. To address this issue, this study presents an adaptive delay compensation method based on a discrete model of the loading system. In particular, the parameters of this discrete model are identified and updated online with the least-squares method to represent a servo hydraulic loading system. Furthermore, based on this model, the system delays are compensated for by generating system commands using the desired displacements, achieved displacements, and previous displacement commands. This method is more general than the existing compensation methods because it can predict commands based on multiple displacement categories. Moreover, this method is straightforward and suitable for implementation on digital signal processing boards because it relies solely on the displacements rather than on velocity and/or acceleration data. The virtual and real RTHS results show that the studied method exhibits satisfactory estimation smoothness and compensation accuracy. Furthermore, considering the measurement noise, the low-order parameter models of this method are more favorable than that the high-order parameter models.

A Fault Monitor Design for the Driving Currents of a DDV Actuation System of a FBW Aircraft (FBW 항공기의 DDV 구동장치에 대한 구동전류 고장 모니터 설계)

  • Nam, Yun-Su;Park, Hae-Gyun;;Choe, Seop;Gwon, Jong-Gwang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.81-86
    • /
    • 2006
  • This paper deals with a driving current fault monitor design methodology for a DDV actuation system which has a dual hydraulic power supply system, and triplex electric control capability. A fault existing among these redundant channels should be detected accurately and removed timely, and the remaining channels are to be reconfigured in order to compensate the role of a removed faulty channel. An integrated analysis on the aerodynamics, flight control laws, and DDV actuation system is essential for the design of an actuation system fault monitor. A method to define a fault transient boundary which specifies a maximum travel of an actuation system caused by the first faulty operation is proposed based on the top level requirement on the fault effect specified in MIL-F-8785C.

Simulation Analysis for the Development of 3 Stage IMV (양방향 3단 IMV 개발을 위한 시뮬레이션 해석)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.

Phenomenological Damping Flow Modeling and Performance Evaluation for a Continuous Damping Control Damper Using MR Fluid (MR 유체를 이용한 연속 감쇠력 가변형 댐퍼를 위한 감쇠유동의 현상학적 모델링과 성능평가)

  • Park, Jae-Woo;Jung, Young-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.73-82
    • /
    • 2008
  • Recently MR CDC damper has been applied to semi-active suspension control system gradually. Compared to former hydraulic CDC damper, it has rapid time response performance as well as simple internal structure and wide range of damping force. In order to develop control logic algorithm which enables to take maximum advantage of unique characteristics of MR CDC damper, it is inevitable to perform a thorough investigation into its nonlinear performance. In many previous researches, MR fluid model was either simply assumed as Bingham Plastic, or a phenomenological model based on experiment was established instead to predict damping performance of MR CDC damper. These experimental flow model which is not based on flow analysis but intentionally built to fit damping characteristics, may lead to totally different results in case of different configuration or structure of MR CDC damper. In this study, a generalized flow formula from mathematical flow model of MR fluid for annular orifice is derived to analyze and predict damping characteristics when current is excited at piston valve.