• 제목/요약/키워드: Hydraulic Behavior

검색결과 635건 처리시간 0.026초

터널의 수리적 수렴 및 제어 거동특성 (Hydraulic convergence and confinement behavior characteristics of tunnels)

  • 정재호;김승현;유현일;신종호
    • 한국터널지하공간학회 논문집
    • /
    • 제26권5호
    • /
    • pp.489-506
    • /
    • 2024
  • 지하수위 아래에서 이루어지는 터널 굴착은 수리경계조건을 변화시켜 굴착면을 향한 흐름을 유발한다. 터널 내 유입량은 굴착 전 시행된 그라우팅, 숏크리트 타설 및 방배수 시스템의 도입, 배수재의 수리적 열화 등에 영향을 받는다. 연속체이론 관점에서 굴착에 따른 지하수의 유입거동은 터널굴착 거동 이론인 내공변위-제어개념과 유사하다. 터널굴착에 따른 지하수 유입거동은 수리적 수렴거동(hydraulic convergence) 개념으로 설명할 수 있고, 지보재인 숏크리트가 유입량을 억제하는 거동은 수리적 제어거동(hydraulic confinement)으로 유추할 수 있다. 본 연구에서는 이론과 수치해석을 이용하여 터널 굴착에 따른 수리적 convergence 및 confinement 거동특성을 조사하였다. 터널 굴착에 따른 수리적 유입량 제어거동은 역학적 내공변위 제어 개념과 일치하며, 터널의 기하학적 조건, 그라우트 두께와 투수성, 그리고 숏크리트와 같은 지보재의 두께와 투수성에 지배됨을 확인하였다.

Behavior of double lining due to long-term hydraulic deterioration of drainage system

  • Shin, Jong-Ho;Lee, In-Keun;Joo, Eun-Jung
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1257-1271
    • /
    • 2014
  • The hydraulic deterioration of the drainage system in tunnel linings is one of the main factors governing long-term lining-ground interactions during the lifetime of tunnels. Thus, in the design procedure of a tunnel below the groundwater table, the possible detrimental effects associated with the hydraulic deterioration should be addressed. Hydraulic deterioration in double-lined tunnels can occur because of reasons such as clogging of the drainage layer and drain-pipe blockings. In this study, the coupled mechanical and hydraulic interactions between linings due to drain-pipe blockings are investigated using the finite-element method. A double-lined structural model incorporating hydraulic behavior is developed to represent the coupled structural and hydraulic behavior between the linings and drainage system. It is found that hydraulic deterioration hinders flow into the tunnel, causing asymmetric development of pore-water pressure and consequent detrimental effects to the secondary lining.

경사 구조물이 침전지내 수리거동 Index에 미치는 영향 (A Study on the Effect of the Inclined Structure on the Hydraulic Behavior Index within Sedimentation basin)

  • 임성호;황준식;박노석;김성수;임경호
    • 상하수도학회지
    • /
    • 제23권5호
    • /
    • pp.517-526
    • /
    • 2009
  • This research has been conducted to investigate the characteristics of hydraulic behavior within the PAC contactor, the rectangular shape sedimentation basin without inclined tube and the other one with inclined tube those are parts of demonstration plants(capacity : $2,000m^3/d$) in Korea Institute of Water and Environment. As results of tracer tests, the flow within PAC contactor was evaluated to divided into plug flow and dead space distinctly, and characteristics of dead space was close to that of CSTR(Complete/continuous Stirred Tank Reactor). Also, considering Reynolds number, Froude number, Morill, Modal, NCSTR Inex and plug flow/mixed flow fraction, in the case of the rectangular shape sedimentation basin without inclined tube, the characteristics of flow pattern was close to CSTR. On the other hand, in the case of the basin with inclined tube, the region of CSTR decreased precisely compared with the case of no-tube. Until now we have recognized that the inclined hydraulic structure just reduces the surface loading rate within a sedimentation basin. Actually besides, the inclined structure have an important effect on the hydraulic behavior within the basin.

반능동 제어용 대칭 실린더형 유압 감쇠기의 동적 거동 (Dynamic Behavior of a Symmetric Cylinder Type Hydraulic Damper for Semi-Active Control)

  • 이일영
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.82-87
    • /
    • 2002
  • For the dynamic behavior evaluation of a semi-active vibration control system, it is very important to use an accurate mathematical model for the hydraulic damper applied to the control system. In this study, a mathematical model for a symmetric type hydraulic damper was suggested. In this model, the effects of gas volume and oil temperature variation on the bulk modulus of oil were considered. The dynamic behavior of the damper was investigated by experiments and simulations. It was confirmed that the pressure variation, damping force, and mean pressure variation could be estimated with comparatively good precision by the suggested mathematical model. Moreover, it was shown that excessive pressure rise can be generated by the oil expansion due to the heat energy transformed from the exciting energy of the damper for a short period of the damper operation.

  • PDF

고성능 유압 휴즈의 특성에 관한 연구 (A practical study of a quick-acting hydraulic fuse)

  • 이성래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.939-944
    • /
    • 1991
  • The dynamic behavior of a quick-acting hydraulic fuse is investigated by analysis and experiment. In view of the short response time, a proper dynamic analysis of the entire hydraulic circuit is necessary, in addition to analysis of the fuse behavior. Dynamic models of the fuse and other hydraulic circuit elements used in the experimental setup are derived and used for computer simulation. Also, the experiments are performed under a variety of operating conditions. Experimental and analytical results are in very good agreement.

  • PDF

지하수-터널 수리상호작용에 따른 터널의 장기거동 연구 (A study on the long-term behavior due to the hydraulic interaction between ground water and tunnel)

  • 신종호;신용석;안상로;박동인
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.239-248
    • /
    • 2006
  • The interaction between ground water and structure is complicated behavior which cannot be easily investigated In the laboratory and monitored in the fields. In this study numerical simulation of the interactive behavior was performed using sophisticated coupled-finite element method. Hydraulic behavior of structure is modeled using solid elements with finite Permeability. Recovery of ground water table in the long-term is considered by controlling hydraulic boundary conditions. The results showed that the interaction effect is significant. Particularly non-symmetry in the lining permeability resulted in highly unbalanced pore water pressure which may cause detrimental effects on inner linings of tunnels acting as drains.

  • PDF

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test

  • Xu, Wen-Jie;Li, Cheng-Qing;Zhang, Hai-Yang
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.815-827
    • /
    • 2015
  • The mechanical behavior of soil and soil-rock mixture is investigated via the discrete element method. A non-overlapping combination method of spheres is used to model convex polyhedron rock blocks of soil-rock mixture in the DEM simulations. The meso-mechanical parameters of soil and soil-rock interface in DEM simulations are obtained from the in-situ tests. Based on the Voronoi cell, a method representing volumtric strain of the sample at the particle scale is proposed. The numerical results indicate that the particle rotation, occlusion, dilatation and self-organizing force chains are a remarkable phenomena of the localization band for the soil and soil-rock mixture samples. The localization band in a soil-rock mixture is wider than that in the soil sample. The current research shows that the 3D discrete element method can effectively simulate the mechanical behavior of soil and soil-rock mixture.

유압 전력 차단기의 동특성에 관한 연구 (A Study on the Dynamic Behavior Characteristics of the Hydraulic Electric Power Circuit Breaker)

  • 하은경;김수태;정상원;김상곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.365-366
    • /
    • 2006
  • Hydraulic circuit breaker is the most popular type of electric power circuit breaker because of its superiority of operating performance and capacity. For the improvement of hydraulic circuit breaker's operating performance, it is very important to analyze its dynamic behavior characteristics. In this study, hydraulic circuit is modeled, analyzed and experimented. As a result, the experimental data agree well with the numerical ones, and the numerical results can be applied to the design and the improvement of hydraulic electric power circuit breaker.

  • PDF

Tip-in/Tip-out 시의 엔진의 동적 거동 해석 (Dynamic Analysis of Engine Response to Throttle Tip-in/Tip-out)

  • 고강호;국형석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.540-545
    • /
    • 2001
  • In this paper dynamic responses of an engine, which is supported by hydraulic mount, to throttle tip-in/tip out are analyzed. Because the hydraulic mounts have non-linearity which the characteristics of stiffness and damping vary with frequencies, it is difficult to analyze the dynamic behavior of an engine using general integral algorithms. Convolution integrals and relationships between unit impulse response functions and frequency response functions are therefore used to simulate the transient behavior of an engine indirectly. In time domain, impulse response functions are calculated by two-side discrete inverse Fourier transform of frequency response function achieved by Laplace transform of equations of motion. Considering the fact that the shapes of behavior of an engine simulated by the proposed method are in good agreement with test results, it is confirmed that the proposed method is very effective for the analysis of transient response to throttle tip-in/out of an engine with hydraulic mounts.

  • PDF