• Title/Summary/Keyword: Hydration water

Search Result 710, Processing Time 0.023 seconds

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 오병환;차수원;신경준;하재담;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

The Correlation Analysis of Fluid Intake, Skin Hydration and Skin pH of College Students (대학생의 수분섭취, 피부 수분보유도 및 피부 pH와의 관계)

  • Kim, Nam-Jo;Hong, Hae Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.17 no.2
    • /
    • pp.132-139
    • /
    • 2015
  • Purpose: The purpose of this study was to verify the correlation analysis between fluid intake on skin hydration and pH of college students. Methods: The subjects were 129 female nursing students in D city. Data were collected by a self-administered questionnaire, using a skin moisture checker and skin pH meter on faces, hands, and feet. The collected data were analyzed by descriptive statistics, t-test, ANOVA, and Pearson correlation analysis, using SPSS WIN, 20. Results: The daily fluid intake was composed of 57% pure water, 21% caffeinated beverages, 22% non-caffeinated beverages. There were significant differences in average skin hydration on the three body parts according to pure water, caffeinated beverages, and non-caffeinated beverages; however, there was no significant difference measured by fluid intake. There was a significant positive correlation between fluid intake and skin hydration: between pure water and skin hydration. There was significant negative correlation between caffeinated beverages and skin hydration: between non-caffeinated beverages and skin hydration. Conclusion: The results suggest that fluid intake, pure water, caffeinated beverages, and non-caffeinated beverages have an effect on skin hydration and pH. Therefore, it is good to increase the amount of fluid intake but, it is recommended to increase the amount of intake of pure water rather than beverages to improve skin status.

Analysis of hydration of ultra high performance concrete (초고성능 콘크리트의 수화모델에 대한 연구)

  • Wang, Hai-Long;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.13-14
    • /
    • 2014
  • Ultra high performance concrete (UHPC) consists of cement, silica fume (SF), sand, fibers, water and superplasticizer. Typical water/binder-ratios are 0.15-0.20 with 20-30% of silica fume. The development off properties of hardening UHPC relates with both hydration of cement and pozzolanic reaction of silicafume. In this paper, by considering the production of calcium hydroxide in cement hydration and its consumption in the pozzolanic reaction, a numerical model is proposed to simulate the hydration of UHPC. The degree of hydration of cement and degree of reaction of silica fume are obtained as accompanied results from the proposed hydration model. The properties of hardening UHPC, such as degree of hydration of cement, calcium hydroxide contents, and compressive strength, are predicted from the contribution of cement hydration and pozzolanic reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and silica fume substitution ratios.

  • PDF

Effects of Salts on the Hydration of $\alpha$-Calcium Sulfate Hemihydrate ($\alpha$형 반수석고의 수화에 미치는 염류의 영향)

  • 최상흘;이구종;홍성윤;이석곤
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.449-454
    • /
    • 1988
  • The effects of salts which was used as a catalysis in formation of $\alpha$-calciumusulfate hemihydrate from dicalcium sulfate hydrate were investigated on the hydration of $\alpha$-calciumsulfate hemihydrate. The hydration of $\alpha$-calciumsulfate hemihydrate was studied by the measurements of crystalline water, heat evolution. Also the hydrates were analyzed by XRD, DSC and SEM. The promotive effect each salts on the hydration was as follows: NaCl>NH4Cl>NaNO3>NH4NO3, and the hydration rate was accelerated with concentration of salts. The effect of Al2(SO4)3 and potassium sodium tartrate on the hydration was slmilar to water, whereas sodium succinate and gelatin retarded the hydration in comparision with water. These salts affected the hydration time but total heat evoution was similar.

  • PDF

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

An improvement on the concrete exothermic models considering self-temperature duration

  • Zhu, Zhenyang;Chen, Weimin;Qiang, Sheng;Zhang, Guoxin;Liu, Youzhi
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.659-666
    • /
    • 2017
  • Based on the Arrhenius equations, several hydration exothermic models that precisely calculate the influence of concrete's self-temperature duration on its hydration exothermic rate have been presented. However, the models' convergence is difficult to achieve when applied to engineering projects, especially when the activation energy of the Arrhenius equation is precisely considered. Thus, the models' convergence performance should be improved. To solve this problem and apply the model to engineering projects, the relationship between fast iteration and proper expression forms of the adiabatic temperature rise, the coupling relationship between the pipe-cooling and hydration exothermic models, and the influence of concrete's self-temperature duration on its mechanical properties were studied. Based on these results, the rapid convergence of the hydration exothermic model and its coupling with pipe-cooling models were achieved. The calculation results for a particular engineering project show that the improved concrete hydration exothermic model and the corresponding mechanical model can be suitably applied to engineering projects.

The Fundamental Study on the decision of the weight of water required to cement hydration (시멘트 페이스트의 수화수량 정량화에 관한 기초적 연구(구조 및 재료 \circled2))

  • 이준구;박광수;김석열;장문기;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.266-271
    • /
    • 2000
  • This study was performed to find out how much water the cement hydration reaction need. It is real situation that it is difficult to find out the amount of chemical combined water with stoichiometric chemical reaction form. Because several variation occurred during hydration reaction it's not easy to divide water which used at cement paste mixture. In this study high temperature(105$^{\circ}C$) dry method was used to divide evaporable water and non-evaporable water. The last is combined water chemically and some free water absorbed to products of hydration physically. The test was processed with variation of water cement ratio from 10% to 45% with 5% intervals. The weight of cement paste specimens were measured after dry for 72hours at each checking time(0.5, 1, 3, 5, 10, 24, 48, 72, 168hour). In this study some conclusions such as follows were derived. Firstly, Pure combined water contents required at cement hydration result in 23.3percent of the weight of cement. Secondly, The sufficient mixing water needed to fully hydrated cement result in about 40∼45percent of weight of cement. That is, gel pores water could be about 16.7∼21.7percent of weight of cement.

  • PDF

A Study on the Hydration Property of Mortar with Balst Furnace Slag using Water Eluted from Recycled Coarse Aggregates (순환골재 용출수를 활용한 고로슬래그 미분말 혼입 모르터의 강도특성)

  • Shin, Sang-Yeop;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.81-82
    • /
    • 2012
  • The purpose of this study is the hydration properties of motar using Blast-Furnace Slag(BFS) with water elured from recycled coarse aggregate. The results of the experiment show that the water eluted from recycled coarse aggregate mixed with blast furnace slag has comparatively higher hydration activity than the mortar not mixed with one in early-age mortar causing the calcium hydroxide in the recycled coarse aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag. BFS mixed with the eluting water the hydration reaction was a promotion.

  • PDF