• Title/Summary/Keyword: Hydration resistance

Search Result 165, Processing Time 0.026 seconds

An Experimental Study on the Durability of Concrete adding MgO-Type Expansive Agent (MgO를 혼합한 콘크리트의 내구특성 평가에 관한 실험적 연구)

  • Kim, Tae-Sang;Jang, Bong-Seok;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.397-400
    • /
    • 2008
  • MgO powder-mixed concrete, expanded at the lower temperature around $850{\sim}1000$ degree celcius, might have long-term expansibility, which could remunerate for the contraction of concrete with delayed expansion, and through the process, the crack resistance of mass concrete might be improved. Currently used expandable concrete additive has three different types : CSA, CaO and MgO. In this study, therefore, such tests as carbonation, chloride diffusivity, freezing-thawing resistance and sulfate resistance after 56 days' curing were implemented and compared the results with the concrete with no MgO mixed to evaluate the durability of 5% MgO-mixed concrete after longer period of time. The degree of hydration for the MgO-mixed cement paste was analyzed after 1 day, 3 days, 7 days, 28 days, and 56 days using SEM, XRD, DSC.

  • PDF

Metal Foam Flow Field Effect on PEMFC Performance (금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2021
  • Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

Analysis of Grounding Resistance and Soil Resistivity Using Mock-up System in Jeju Soil (제주토양 목업시스템을 사용한 접지저항 및 대지저항률 분석)

  • Boo, Chang-Jin;Ko, Bong-Woon;Kim, Jeong-Hyuk;Oh, Seong-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.536-543
    • /
    • 2016
  • The installation of grounding systems is important for the safe operation of power systems, and the soil resistivity is an important design consideration for such systems. It varies markedly with the soil type, moisture content and temperature. The Jeju geological structure is formed in a multi-layered structure characteristic of volcanic areas and, and the geological ground resistance values can appear even constructed the same areas ground system different from the soil structure. In this study, a mock-up system using representative soil from Jeju was constructed to analyze the variation of the grounding resistance. The mock-up system was configured using the Gauss-Newton algorithm inversion method to analyze the model numerically using the Wenner method through the soil resistivity measurements used to create the ground model. Also, we analyzed the change in the general ground resistance characteristics of the copper rod, copper pipe, and carbon rod that are used for grounding. The variation of the grounding resistance with the hydration status was found to be $2.9[{\Omega}]$, $16.5[{\Omega}]$ and $20.1[{\Omega}]$ for the copper rod, copper pipes, and carbon rod, respectively, and the influence of the ground moisture resistance of the carbon rod was found to be the lowest with a value of $141[{\Omega}]$.

An Experimental Study on Early Strength and Drying Shrinkage of High Strength Concrete Using High Volumes of Ground Granulated Blast-furnace Slag(GGBS) (고로슬래그 미분말을 대량 사용한 고강도 콘크리트의 조기강도 및 길이변화 특성에 관한 실험적 연구)

  • Yang, Wan-Hee;Ryu, Dong-Woo;Kim, Woo-Jae;Park, Dong-Cheol;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.391-399
    • /
    • 2013
  • For high strength concrete of 40~60 MPa, the effects on the early strength and concrete dry shrinkage properties replacing 60~80% of Ordinary Portland Cement with Blast Furnace Slag Powder and using the Alkali Activator (Modified Alkali Sulfate type) are considered in this study. 1% Alkali Activator to the binder, cumulative heat of hydration for 72 hours was increased approximately 45%, indicating that heat of hydration contributes to the early strength of concrete, and the slump flow of concrete decreased slightly by 3.7~6.6%, and the 3- and 7- strength was increased by 8~12%, which that the Alkali Activator (Modified Alkali Sulfate type) is effective for ensuring the early strength when manufacturing High Strength Concrete (60%) of Blast Furnace Slag Powder. Furthermore, the dry shrinkage test, both 40 MPa and 60 MPa specimens had level of length changes in order of BS40 > BS60 > BS60A > BS80A, and the use of the Alkali Activator somewhat improved resistance to dry shrinkage.

Field Application of 80MPa High Strength Fire Resistant Concrete using Ternary Blended Cement (설계강도 80MPa 3성분계 고강도내화콘크리트의 현장적용 및 성과분석)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.113-119
    • /
    • 2010
  • Fire resistance and field tests for high-strength concrete(HSC) of 80MPa were carried out to evaluate whether or not it shows the same material properties even in the field condition of being mass-produced and supplied. As a result, it was found that fire resistant HSCs containing composite fiber(NY, PP) of 0.075% have great resistance to fire and spalling. In the field test, before the pumping air contents, slump flow, U-box, L-flow, compressive strength, gap of hydration temperature of interior and exterior of specimen and placing ratio per hour satisfied the required properties of HSC. However, after the pumping of HSC, as slump flow and L-flow were slightly less than required criterion, they need to be improved. In terms of hydration temperature of HSC, it was found to satisfy the related criterion. Packing ability as well as placing ratio per hour of HSC, which was about $44m^3$, show outstanding results. If slump flow of developed ternary HSC is improved after the pumping it can be useful for the construction of high-rise buildings.

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS (삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성)

  • Kim, Tae-Hoon;Jang, Seung-Yup;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

A Experimental Study on the Seawater Attack Resistance of Grouting Mixtures (내해수성 주입재 배합에 관한 실험적 연구)

  • Chun, Byungsik;Choi, Dongchan;Kim, Younghun;Kim, Jinchun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • In seawater deposition condition, the corrosion and chemical attack of grouts are similar to those of concrete structure. Used in domestic MSG (Micro Silica Grouting) mixtured large amounts of silicate materials containing as cement powder is $8,000cm^2/g$ of the specific surface area or more due to the high hydration activity and high-strength, high durability, and features, $C_3A$ content of less than 5% to meet the standards chemical attack of seawater was evaluated as a cement material. Therefore, in this paper, with excellent seawater attack resistant MSG in combination with rapid hardening mineral was used, those of seawater characteristics were evaluated experimentally. Typically, sodium-silicate minerals or rapid hardening cements are used in domestic. About the homogel specimens with combination of MSG and rapid hardening agents for compressive strength, weight and length change characteristics were evaluated experimentally, and so we could present the excellent seawater resistant grouts combination.

Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions (재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Concrete behavior in early-age is changing due to hydration reaction with time, and a resistance to chloride attack and strength development are different characterized. In the present work, changing strength and resistance to chloride attack are evaluated with ages from 28 days to 6 months. For the purpose, strength, diffusion coefficient, and passed charge are evaluated for normal concrete with 3 different mix proportions considering 28-day and 6-month curing conditions. With increasing concrete age, the changing ratio of strength falls on the level of 135.3~138.3%, while diffusion coefficient and passed charge shows 41.8%~51.1% and 53.6%~70.0%, respectively. The results of chloride diffusion coefficient and passed charge show relatively similar changing ratios since they are much dependent on the chloride migration velocity in electrical field. The changing ratios in chloride behaviors are evaluated to be much larger than those in compressive strength since the ion transport mechanism is proportional to not porosity but square of porosity.