• Title/Summary/Keyword: Hydration model

Search Result 209, Processing Time 0.024 seconds

Skin Hydration Effect of Jeju Lava Sea Water (제주용암해수의 피부 보습 효과 연구)

  • Lee, Sung Hoon;Bae, Il-Hong;Min, Dae Jin;Kim, Hyoung-June;Park, Nok Hyun;Choi, Ji Hae;Shin, Jin Seob;Kim, Eun Ju;Lee, Hae Kwang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.343-349
    • /
    • 2016
  • Many minerals and nutrient salts are abundant in Jeju lava sea water. The objective of this study was to evaluate the skin hydration effects of Jeju lava sea water. The skin barrier serves as a protective barrier that prevents the loss of moisture. The water holding capacity and water transport of the epidermis have been proposed to be important determinants of skin hydration. Jeju lava sea water increased the mRNA expression of filaggrin and caspase-14 which is related to natural moisturizing factor (NMF) formation. Aquaporins 3 (AQP3) are proteins that facilitate the transport of water across cell membranes. Jeju lava sea water increased the mRNA expression and protein expression of AQP3. We employed a skin equivalent model to assess the efficacy of Jeju lava sea water. In a skin equivalent model, Jeju lava sea water increased the CD44 (hyaluronic acid receptor) which is related to skin hydration. From these results, we found out Jeju lava sea water maybe help to skin hydration.

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Freeze-dried bovine amniotic membrane as a cell delivery scaffold in a porcine model of radiation-induced chronic wounds

  • Oh, Daemyung;Son, Daegu;Kim, Jinhee;Kwon, Sun-Young
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.448-456
    • /
    • 2021
  • Background Locoregional stem cell delivery is very important for increasing the efficiency of cell therapy. Amnisite BA (Amnisite) is a freeze-dried amniotic membrane harvested from bovine placenta. The objective of this study was to investigate the retention of cells of the stromal vascular fraction (SVF) on Amnisite and to determine the effects of cell-loaded Amnisite in a porcine radiation-induced chronic wound model. Methods Initially, experiments were conducted to find the most suitable hydration and incubation conditions for the attachment of SVF cells extracted from pig fat to Amnisite. Before seeding, SVFs were labeled with PKH67. The SVF cell-loaded Amnisite (group S), Amnisite only (group A), and polyurethane foam (group C) were applied to treat radiation-induced chronic wounds in a porcine model. Biopsy was performed at 10, 14, and 21 days post-operation for histological analysis. Results Retaining the SVF on Amnisite required 30 minutes for hydration and 1 hour for incubation. A PKH67 fluorescence study showed that Amnisite successfully delivered the SVF to the wounds. In histological analysis, group S showed increased re-epithelialization and revascularization with decreased inflammation at 10 days post-operation. Conclusions SVFs had acceptable adherence on hydrated Amnisite, with successful cell delivery to a radiation-induced chronic wound model.

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

Semiempirical MO Study on Malonyl-CoA. 1. Malonic Acid and Malonyl Methyl Sulfide

  • Yu, In Gi;Kim, Yeong Ju;Kim, Si Chun;Kim, Yu Sam;Gang, Yeong Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.112-120
    • /
    • 1995
  • The conformational study on malonic acid, hydrogen malonate, malonate, malonyl methyl sulfide, and malonyl methyl sulfide anion, as the model compounds of malonyl-CoA, was carried out using the semiempirical MO methods (MNDO, AM1, and PM3) and hydration shell model. On the whole, the feasible conformations of malonic acid, hydrogen malonate, and malonate seem to be similar to each other. In malonic acid and malonate, two carboxyl groups are nearly perpendicular to the plane of the carbon skeleton, despite of different orientation of two carboxyl groups themselves. In particular, two carboxyl groups of hydrogen malonate are on the plane formed by carbon atoms with an intramolecular hydrogen bond. The calculated results on the geometry and conformation of three compounds are reasonably consistent with those of X-ray and spectroscopic experiments as well as the previous calculations. The orientation of two carbonyl groups of malonyl methyl sulfide is quite similar to that of malonic acid, but different from that of its anion. Especially, the computed probable conformations of the sulfide anion by the three methods are different from each other. The role of hydration seems not to be crucial in stabilizing the overall conformations of malonic acid, hydrogen malonate, malonate, and malonyl methyl sulfide. However, the probable conformations of the unhydrated sulfide anion obtained by the MNDO and AM1 methods become less stabilized by including hydration. The AM1 method seems to be appropriate for conformational study of malonyl-CoA and its model compounds because it does not result in the formation of too strong hydrogen bonds and significant change in conformational energy from one compound to another.

Geochemical Modelling of the Effect of Calcite and Gypsum on the Hydration of Cements (방해석 및 석고가 시멘트 수화과정에 미치는 영향에 대한 지구화학 모델링 연구)

  • Ryu, Ji-Hun;Kim, Geon-Young;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • The effect of calcite and gypsum on the hydration of Portland cement was investigated using GEM-PSI, a geochemical model. Addition of calcite and gypsum up to 5 wt% of total cement clinker into Portland cement was found to influence the hydrate assemblage of the hydrated cement in different ways. The results of geochemical modelling showed that the fraction of calcium monocarbonate increased by the hydration of cement with the increase of calcite addition. The results of modelling also indicated that gypsum increased the fraction of ettringite in the assemblage of hydrated cement as the amount of gypsum added increases. This study showed that porosity generated by the hydration of cement had a significant relation with the amount of calcite and gypsum added. The porosity of hydrated cement was lower when calcite added up to 3 wt% of cement clinker compared to the hydrated cement with the same amount of gypsum addition. However, when calcite added more than 3% of cement clinker, the porosity of hydrated cement were higher than that of hydrated cement with the same amount of gypsum addition.

Interaction Metal Ions with NADH Model Compounds. Cupric Ion Oxidation of Dihydronicotinamides

  • Park, Joon-Woo;Yun, Sung-Hoe;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.298-303
    • /
    • 1988
  • Kinetic studies on cupric ion ($Cu^{2+}$) oxidation of 1-benzyl- and 1-aryl-1,4-dihydronicotinamides (XNAH) in aqueous solution were performed. In the presence of dioxygen ($O_2$), the reaction followed first order kinetics with respect to both XNAH and $Cu^{2+}$. The oxidation reaction was found to be independent and parallel to the acid-catalyzed hydration reaction of XNAH. The catalytic role of $Cu^{2+}$ for the oxidation of XNAH in the presence of $O_2$ was attributed to $Cu^{2+}/Cu^+$ redox cycle by the reactions with XNAH and $O_2$. The second order rate constants of the Cu2+ oxidation reaction kCu, and acid-catalyzed hydration reaction $k_H$ were strongly dependent on the nature of the substituents in 1-aryl moiety. The slopes of log $k_{Cu}$ vs log $K_H$ and log $k_{Cu}$ vs ${\sigma}_p$ of the substituents plots were 1.64 and -2.2, respectively. This revealed the greater sensitivity of the oxidation reaction rate to the electron density on the ring nitrogen than the hydration reaction rate. A concerted two-electron transfer route involving XNAH-$Cu^{2+}$ complex was proposed for mechanism of the oxidation reaction.

$7^{th}-12^{th}$ Grade Students, Pre-service Teachers and Science Teachers' Views on the Dissolution of Salt in a Liquid

  • Won, Jeong-Ae;Kang, Dae-Hun;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.3
    • /
    • pp.187-196
    • /
    • 2008
  • In this study, a survey was conducted of students in grades 7 through 12, student teachers enrolled in their senior year at teachers' colleges, and science teachers. Subjects were surveyed on their conceptions of phenomenon related with dissolution, saturation, and extraction. The models and analogies used by student teachers and science teachers to explain dissolution were sought. The highest percentage of students thought of dissolution as a phenomenon in which particles broke into the spaces between other particles. The models or analogies used by the highest percentage of science teachers were similar. They generally conceived of dissolution phenomenon through what we call the 'space conception'. A conception of dissolution phenomenon as 'hydration through attraction of solvent and solute' was held by more student teachers than science teachers; there were some differences, however, according to their academic background. The percentage of teachers professing this view decreased when they attempted to explain the process of extraction of matter in a solution after other matter had dissolved or after the solution was cooled, indicating that the 'hydration' conception was not firmly established in the student teachers' cognition. Therefore, it can be inferred that the conceptions of dissolution as 'hydration' were transformed into the conceptions of dissolution as 'space' after teaching dissolution phenomenon as practicing teachers. This finding should be considered in teacher-training courses.

Conformational Analysis of Sulfonylureas (술포닐 우레아 유도체들의 형태분석)

  • Kang, Kee-Long;Lee, Sung-Hee;Chung, Uoo-Tae
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.518-528
    • /
    • 1992
  • To determine the optimal conformation of sulfonylureas, the correlation between conformation and hypoglycemic activity of the two sulfonylureas of tolbutamide and chlorpropamide as hypoglycemic agent was studied using an empirical potential function (ECEPP/2) and the hydration shell model in the unhydrated and hydrated states. The conformational energy was minimized from several starting conformations with possible torsion angles in each molecule. The conformational entropy change of each conformation was computed using a harmonic approximation. To understand the hydration effect on the conformation of the molecules in aqueous solution, the contribution of water-accessible volume of each group or atom in the lowest-free-energy conformation was calculated and compared each other. From comparison of the computed lowest-free-energy conformations of two sulfonylureas, it could be suggested that the hydration of sulfonylurea moiety is related to increase the hypoglycemic activity. From the calculation results, it was known that the conformational entropy is the major contribution to stabilize the low-free-energy conformations of two sulfonylureas in unhydrated state. Whereas, in hydrated state, the hydration free energy largely contributes to the total free energies of low-free-energy conformations of tolbutamide and conformational entropy contributes to stabilize the low-free-energy conformations of chlorpropamide. The torsion angles from phenyl ring to urea moiety of the low-free-energy conformations of the two sulfonylureas were shown the nearly regular trend. On the basis of these results, the conformation exhibiting the optimal hypoglycemic activity of sulfonylureas and the binding direction to pancreatic receptor site A could be predicted. Also, according to the side chain lengthening of urea moiety, tolbutamide showed various conformational change. Therefore, steric effect may be important factor in the interaction between sulfonylureas and the putative pancreatic receptor.

  • PDF