• Title/Summary/Keyword: Hydration characteristics

Search Result 383, Processing Time 0.025 seconds

Analysis on Composition and Strength of Lime-Soil Mixture Barrier Tombs at Guri Galmae Site in Joseon Dynasty (조선시대 구리 갈매유적 회곽묘의 조성 및 강도분석)

  • Lee, Chan Hee;Eo, Eon Il;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.2
    • /
    • pp.40-61
    • /
    • 2017
  • This study investigated material characteristics of composition and variable strength measurement using physicochemical and petrographic analysis for lime-soil mixture barrier tombs of Guri Galmae site in Joseon Dynasty. The tomb barriers are composed mainly of microcrystalline calcite, quartz, feldspar and mica with lime matrix. The lime matrix shows compact sheet texture, and some samples show hydration aggregates with needle-shaped textures. Gypsum occurred as a secondary process where carbonization reactions were poor. Concentrations of CaO in the tomb barrier very widely ranged from 4.43 to 36.19 wt.%, specific gravity and absorption ratio of the materials show of 1.35 to 1.62 and 20.1 to 32.6%, respectively. As the rebound hardness, the materials ranged from 10.0 to 28.4 (mean 15.7). The values are higher in the $-90^{\circ}$ direction rather than in the $0^{\circ}$ direction with the consequence that the values indicate more strength toward the vertical direction. Difference in strength by directions was caused by the directions of the tomb barriers, which is related to the processes in each stage. In the tomb barriers, ultrasonic velocity and unconfined compressive strength ranged from 1,049.2 to 1,728.9m/s and under 5.00MPa, respectively. Variation patterns between the two are very similar in values. As the result of composition and strength, the materials of higher contents on CaO are higher in strength values. Generally, techniques and skills to make the lime-soil mixture barriers are interpreted as low qualities in relatively.

Water Repellent Characteristics of Cement Paste Added Silane/siloxane-based Emulsion Water Repellent (실란/실록산계 에멀전 발수제를 혼입한 시멘트 페이스트의 발수특성)

  • Kang, Suk-Pyo;Hong, Seong-Uk;Kang, Hye-Ju;Yang, Seung Hyeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • The aim of this paper is to improve durability of cement paste by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement paste mixed with a silane/siloxane-based water repellent, and the initial hydration performance, flow performance, and age-specific compressive strength were measured. In addition, the water contact angle, SEM, and XRD before and after surface polishing were measured. When 0.5% of the silane/siloxane-based water repellent was mixed into the cement paste, the compressive strength increased, but the compressive strength decreased as the mixing amount increased by 1.5% and 3.0%. When a silane/siloxane water repellent was incorporated into the cement paste, the hydrophilicity was improved and the contact angle was increased due to hydrophobicity. In addition, the contact angle after surface polishing was found to be larger than the contact angle before surface polishing.

Water Repellent Characteristics According to the Surface Properties of Cement Mortar Mixed with Water-soluble Water Wepellent (표면 성상에 따른 수용성 발수제 혼입 시멘트 모르타르의 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Hong, Seong-Uk;Yang, Seung-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.42-49
    • /
    • 2020
  • This paper is a basic study to improve durability by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement mortar to which a silane/siloxane-based mixed water repellent was added was prepared, and its initial hydration performance, flow performance, and compressive strength were measured. In addition, after the surface was abraded, the water contact angle and water absorption were measured. The flow of cement mortar to which the water repellent was added was found to decrease up to 1.5% in the addition amount of the water repellent agent, and increased at 3.0% in the addition amount. It was found that the setting time of the cement paste was delayed in both the initial setting and the termination when the water repellent was added. It was found that the compressive strength decreased from 3.0% of the maximum added amount of the water repellent to a maximum of 30%. The contact angle was found to increase when the water repellent was added to the cement mortar, and the contact angle after surface polishing was found to be larger than before surface polishing. The addition of the water repellent showed hydrophobicity not only on the surface but also on the surface and cross section damaged by polishing. The water absorption rate was found to decrease when the water repellent was added to the cement mortar, and the water absorption rate after surface polishing was found to be greater than before surface polishing.

Freeze-Thaw Resistance of Alkali Activated Ternary Blended Cement Incorporated with Ferronickel Slag (알칼리 활성화제를 첨가한 페로니켈슬래그 혼입 삼성분계 콘크리트의 동결융해 저항성)

  • Cho, Won-Jung;Park, Kwang-Pil;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2022
  • The present study assessed the micro structure and durability characteristics of ternary blended cement with different types of alkali activators. Ground granulated blast furnace slag(GGBS) and ferronickel slag(FNS) was replaced until 50 % of the weight of cement. In addition, potassuim hydroxide and sodium hydroxide were used for comparing the properties of different type of alkali activator. Ternary blended cement with alkali activators showed higher peak portlandite peak than that of OPC(Ordinary Portlande Cement) and non activated ternary blended cement. Also, there was no new hydration products in ternary blended cement or/and alkali activators. Based on the mercury intrustion porosimetry(MIP) test result, ternary blended cement increased macro pore while alkali activated ternary blended cement modified pore structure and increased microp pore as compared to OPC as control. Combination with alkali activators is desirable to enhance the compressive strength and freeze thaw resistance.

Manufacturing Properties and Hardening Characteristic of CO2 Reactive Hardening Cement (이산화탄소 반응경화 시멘트 제조 및 경화특성 연구)

  • Ki-Yeon Moon;Byung-Ryeol Kim;Seung-Han Lee;Moon-Kwan Choi;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.52-59
    • /
    • 2022
  • Calcium silicate based cement (CSC) is a low-carbon cement that emits less CO2 by up to 70% compared to ordinary Portland cement during its manufacture. Most developed countries have commercialized CSC, whereas Korea is still investigating the manufacturing characteristics and basic properties of CSC. This paper provides a review of methods for manufacturing CSC using domestic raw materials and discusses the possibility of CSC localization based on an evaluation of the basic physical properties of manufactured CSC. The experimental results of this study indicate that the primary mineral components of CSC were CS, C3S2 C2S, and unreacted SiO2. This suggests the possibility of manufacturing CSC using domestic raw materials that exhibit mineral compositions similar to that of theoretical CSC. The compressive strength of CSC mortar is less than 1MPa at the age of 7 d under wet curing. This implies that hydration does not affect the property development of CSC mortar. Meanwhile, during carbonation curing, the compressive strength is 56 MPa or higher after 7 d, which indicates excellent early strength development. Furthermore, results of Thermogravimetric Analysis Differential scanning calorimetry (TG/DSC) show that a significant amount of CaCO3 is formed, which is consistent with the results of previous studies. This implies that carbonation is associated significantly with the properties of CSC.

The Effects of Steeping and Cooking Pressure on Qualities of Cooked Brown Rice (침지조건과 압력이 현미의 취반특성에 미치는 효과)

  • Park, Jeong-Woo;Chae, Seon-Hee;Yoon, Sun
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • This study was conducted to determine the optimal cooking conditions for brown rice using an electric pressure rice cooker. The effects of steeping conditions and cooking pressure on the hydration, gelatinization, texture and palatable properties of cooked brown rice were evaluated. Based on water uptake and DSC data, the optimal steeping time and temperature for brown rice were determined to be 25 minutes and ${\sim}60^{\circ}C$, respectively. The cooking conditions for brown rice were then divided into the following 6 categories: steeping at $25^{\circ}C$ for 25 minutes and cooking at an atmospheric pressure of 1.7 (25P) or 1.9 (25HP), steeping at $57^{\circ}C$ for 25 minutes and cooking at an atmospheric pressure of 1.7 (57P) or 1.9 (57HP), steeping at $85^{\circ}C$ for 15 minutes and cooking at an atmospheric pressure of 1.7 (85P) or 1.9 (85HP). The susceptibility of cooked brown rice starch to degradation into maltose by ${\alpha}$-amylase, which is related to the degree of gelatinization and in vitro digestibility, were then determined. The amount of maltose produced by cooked brown rice samples was highest in the 57HP group, followed by the 57P and 85HP groups. Storing cooked brown rice at $73^{\circ}C$ for 24 hours resulted in significantly higher amounts of starch being degraded into maltose in the 57P, 57HP and 85HP groups than in the other groups. Textural analysis demonstrated that the 57P, 57HP and 85HP groups had significantly lower gumminess and chewiness values when compared to the other groups, and that 57HP received had the lowest hardness of all treatments. These results were confirmed by the results of the sensory evaluations. Furthermore, the 57P and 57HP groups were found to have a higher glossiness, stickiness aroma and taste score than the other groups. These findings were taken to indicate that steeping conditions and pressure exerted a positive synergistic effect on the cooking quality of brown rice. The texture analyzer also revealed that storing the cooked rice at $73^{\circ}C$ for 24 hours only led to significantly lower scores in gumminess, hardness and chewiness in the 57P and 57HP groups, which indicates that these groups underwent a lesser degree of retrogradation than other groups. Taken together, the results of the present study demonstrate that steeping brown rice at $57^{\circ}C$ for 25 minutes and a higher cooking pressure improved the palatability and in vitro digestibility of brown rice significantly.

A Effect of Chemical Composition and Replacement Ratio of Limestone Admixture on Initial Cement Characteristics (석회석 혼합재의 화학성분과 치환량이 시멘트 초기 물성에 미치는 영향)

  • Dong-Kyun Suh;Gyu-Yong Kim;Jae-Won Choi;Kyung-Suk Kim;Ji-Wan Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.440-448
    • /
    • 2023
  • Utilizing admixture, which is one of the raw material replacement method in the cement industry, is expected to be easily and quickly put to practical use as it is relatively more accessible than other methods. Among cement admixtures, limestone powder is reported to be able to improve cement performance through nucleation effects, chemical effects, and filler effects, so it is a material expected to be suitable as a cement admixture. Meanwhile, as high-quality limestone is depleted around the world, the use of limestone with clay or high magnesia (MgO) content is becoming increasingly inevitable. Therefore, in this study, we attempted to evaluate the suitability of limestone cement as a admixture by measuring the basic properties of limestone cement mixed with limestone of different qualities commonly used in Korea. As a result, the effect of alite reaction promotion was confirmed regardless of the chemical composition of the limestone binder. However, the dilution effect depending on the substitution amount was greater than the chemical composition. It is believed that normal-grade limestone can be used as a mixture as long as the limestone content in cement is within 15 % in this scope of study. In the future, we plan to evaluate the impact of the chemical composition of the limestone mixture through additional experiments depending on the chemical composition of cement.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

The CH3CHO Removal Characteristics of Lightweight Aggregate Concrete with TiO2 Spreaded by Low Temperature Firing using Sol-gel Method (Sol-gel법으로 이산화티탄(TiO2)을 저온소성 도포시킨 경량골재콘크리트의 아세트알데히드(CH3CHO) 제거 특성)

  • Lee, Seung Han;Yeo, In Dong;Jung, Yong Wook;Jang, Suk Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.129-136
    • /
    • 2011
  • Recently studies on functional concrete with a photocatalytic material such as $TiO_2$ have actively been carried out in order to remove air pollutants. The absorbtion of $TiO_2$ from those studies is applied by it being directly mixed into concrete or by suspension coated on the surface. When it comes to the effectiveness, the former process is less than that of the latter compared with the $TiO_2$ use. As a result, the direct coating of $TiO_2$ on materials' surface is more used for effectiveness. The Surface spread of it needs to have a more than $400^{\circ}C$ heat treat done to stimulate the activation and adhesion of photocatalysis. Heat treat consequently leads hydration products in concrete to be dehydrated and shrunk and is the cause of cracking. The study produces $TiO_2$ used Sol-gel method which enables it to be coated with a low temperature treat, applies it to pearlite using Lightweight Aggregate Concrete fixed with a low temperature treat and evaluates the spread performance of it. In addition to this, the size of pearlite is divided into two types: One is 2.5 mm to 5.0 mm and the other is more than 5.0 mm for the benefit of finding out the removal characteristics of $CH_3CHO$ whether they are affected by pearlite size, mixing method and ratio with $TiO_2$ and elapsed time. The result of this experiment shows that although $TiO_2$ produced by Sol-gel method is treated with 120 temperature, it maintains a high spread rate on the XRF(X ray Florescence) quantitative analysis which ranks $TiO_2$ 38 percent, $SiO_2$ 29 percent and CaO 18 percent. In the size of perlite from 2.5 mm to 5.0 mm, the removal characteristic of $CH_3CHO$ from a low temperature heated Lightweight concrete appears 20 percent higher when $TiO_2$ with Sol-gel method is spreaded on the 7 percent of surface. In other words, the removal rate is 94 percent compared with the 72 percent where $TiO_2$ is mixed in 10 percent surface. In more than 5.0 mm sized perlite, the removal rate of $CH_3CHO$, when $TiO_2$ is mixed with 10 percent, is 69 percent, which is similar with that of the previous case. It suggests that the size of pearlite has little effects on the removal rate of $CH_3CHO$. In terms of Elapsed time, the removal characteristic seems apparent at the early stage, where the average removal rate for the first 10 hours takes up 84 percent compared with that of 20 hours.

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.