• 제목/요약/키워드: Hydration characteristics

검색결과 387건 처리시간 0.024초

Study on Hydration Heat Analysis of Pier Foundation-Column Using Low Heat Concrete (저발열 콘크리트를 사용한 교각 기초-기둥의 수화열 해석에 관한 연구)

  • Jeon, Joong-Kyu;Kim, Sun-Gil;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제2권3호
    • /
    • pp.217-224
    • /
    • 2014
  • This study carried out to evaluate the hydration heat analysis and fundamental characteristics such as air content, slump and compressive strength for field application of low heat concrete with premixed cement. The results of experiment show that low heat concrete with premixed cement have sufficient performances on the workability and compressive strength. In addition, hydration heat analysis shows that low heat concrete with premixed cement make sure of target thermal cracking index. Therefore, it is desirable to apply the low heat concrete with premixed cement on pier foundation-column.

Generation of Hydration Heat of the Concrete Combined Coarse Particle cement and Fly ash (조분시멘트와 플라이애시를 조합 사용한 콘크리트의 수화발열 특성)

  • Lee, Chung-Sub;Baek, Dae-Hyun;Cha, Wan-Ho;Kwon, O-Bong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.889-892
    • /
    • 2008
  • This study, having combined and displaced fly ash known as admixture material that delays hydration reaction with coarse particle cement("CC" hereinafter) collected in particle classification method during ordinary portland cement("OPC" hereinafter), reviewed the hydration heat characteristics affecting the concrete. To reduce hydration heat, the study plain-mixed which used 100% OPC for WB 50% level 1, displaced CC at level 3 of 25%, 50% and 75% for OPC, and by displacing FA with admixture material at level 5 of 0%, 10%, 20%, 30% and 40%, experimented totally 16 batches. As a result of experiment, in the case of flow, the more CC displacement rate increased, the more it tended to decrease, and the more FA displacement rate increased, the more it decreased. As for simple adiabatic temperature rise by the CC and FA displacement rates, it decreased as displacement rate increased, and particularly in the case of FA40, temperature rise amount, $5.8{\sim}7.4^{\circ}C$, was very low. Compressive strength decreased in proportion to displacement rate, however strength reduction increment was shown to decrease with age progress.

  • PDF

Characteristics of Hydration Heat Control of Mass Concrete using Pulsating Heat Pipe in the Winter Season (진동형 히트 파이프를 이용한 매스 콘크리트의 겨울철 수화열 제어 특성)

  • Yang, Tae-Jin;Kim, Jeung-Hoon;Youm, Chi-Sun;Kim, Myung-Sik;Kim, Jong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제19권2호
    • /
    • pp.169-174
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure, the heat of hydration may cause serious thermal cracking. This paper reports results of hydration heat control in mass concrete using the oscillating heat pipe. There were three RC box molds ($1.2m{\times}1.8m{\times}2.4m$) which were different from each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of 10 turns of serpentine type copper pipe whose outer and inner diameters were 4 and 2.8 mm respectively. The working fluid was R-22 and charging ratio was 40% by volume. The temperature of the concrete core was approximately $55^{\circ}C$ in the winter without pulsating heat pipe. For a concrete with pulsating heat pipe, however, the temperature difference with the outdoor one reduced up to $12^{\circ}C$. The index figure of crack was varied from 0.75 to 1.38.

A Study for Analyzing the Mechanism of Enhanced Cementitious Reactivity of Bottom Ash by Using Functional Grinding Agent (기능성 분쇄조제를 통한 건조저회의 시멘트 반응성 메커니즘 분석 연구)

  • Ahyeon Lim;Hyunuk Kang;Juhyuk Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제12권3호
    • /
    • pp.271-280
    • /
    • 2024
  • In this study, commercially available chemical activator was utilized as a grin din g agen t for bottom ash to develop bottom ash blended cement. The hydration characteristics of the bottom ash blended cement were analyzed using X-ray diffraction and thermogravimetric analysis. In particular, the PONKCS method was employed to quantify the amorphous C-S-H and bottom ash. The use of chemical activator delayed the hydration reaction of the cement and reduced the reactivity of the bottom ash. However, appropriate delay of hydration and enhanced reaction of aluminate successfully led to the formation of a substantial amount of monocarboaluminate. Consequently, the use of chemical activator greatly improved the compressive strength of the bottom ash blended cement, resulting in the 20240713development of high-performance bottom ash blended cement.

Factors Affecting Hydration Rate of Black Soybeans (검정콩의 흡수속도(吸水速度)에 미치는 영향인자)

  • Kim, Woo-Jung;Shin, Ea-Sook;Kim, Chong-Kun;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • 제17권1호
    • /
    • pp.41-44
    • /
    • 1985
  • Dried black soybeans were soaked in water at the temperature range of $4^{\circ}C-100^{\circ}C$ and in the solution having various concentration of salt and sugar, in order to investigate their effects on water absorption characteristics. The hydration rate was determined by the method of weight gain during soaking. The times required to reach specified degrees of hydration were reduced logarithmically by increase of temperature, with showing a break point in their Z-values at $60^{\circ}C$. The temperature effect on hydrations of black soybeans was higher at the temperature below $60^{\circ}C$. Increase of NaCl or sucrose concentration in soaking solution reduced the hydration rate. The Z-values were changed at the concentration of 25% for sucrose and 16% for NaCl. The activation energy for hydration of 30%-50% was found to be 5.7-7.2Kcal/mole. The higher activation energy was required to reach higher degree of hydration.

  • PDF

A Hydration Reaction and Strength Development Properties of Cement Using Pond Ash in Coal Fired Power Plant (화력 발전소 매립회를 치환한 시멘트의 수화반응 및 강도발현 특성)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Shin, Hong-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제9권4호
    • /
    • pp.578-584
    • /
    • 2021
  • This study comparatively analyzed the properties of hydration reaction and strength development of four types of pond ash(PA) and fly ash(FA), aiming for the effective use of PA. The PA whose chlorine content was highest due to the seawater movement method had a faster setting time, higher cumulative heat, and greater initial strength development than those of FA due to the acceleration of the cement hydration reaction. However, the activity factor increase rate decreased after seven days of curing due to the rapid generation of early hydrates. The PA that contained impurities, such as a large amount of unburned carbon, had a delayed setting time due to the lower hydration reaction. Moreover, the strength was degraded in all curing ages. The PA whose chlorine content was lower due to the freshwater movement method and the amorphous content exhibited similar hydration reactivity and strength development characteristics compared to that of FA. The thermogravimetric analysis results verified that it had a similar level of Ca(OH)2 consumption and pozzolanic reactivity with that of FA. Conclusively, it is necessary to expand the application of the freshwater movement method and manage the ignition loss to raise PA's usability.

Study on Skin Elasticity Property between Face and Forearm according to the Environmental Change of Stratum Corneum (각질층 환경변화에 따른 얼굴과 하박내측 피부의 탄력 특성 비교연구)

  • Chang, Minyoul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제44권4호
    • /
    • pp.455-463
    • /
    • 2018
  • Skin elasticity has been known to be influenced by the change of dermal components such as collagen, elastic fiber, and glycosaminoglycans. However, it is unclear whether the uppermost epidermis may affect the mechanical characteristics of elasticity. In present study we tried to find the role of stratum corneum when determining the elastic property under skin bioengineering measurement with $Cutometer^{(R)}$. A total of 10 healthy volunteers aged 25-40 years were investigated by the parameters reflecting the skin elasticity from face and volar forearm. Within various ranges of suction pressure, R0 (=Uf), R7 (=Ur/Uf) and R8 (=Ua) were obtained to explore the depth-associated elasticity. In addition, these parameters were re-measured after the skin was fully hydrated. As results, we found that the measurement of depth-associated elasticity was possible as using various suction pressure. And the R7 parameter was significantly lower from face than those from forearm in before hydration (p < 0.05). Also, we found that the hydration of stratum corneum could affect skin elasticity. Especially, the R7 parameter at 300 mbar suction pressure of face skin showed significantly increased values than that of before hydration (p < 0.05). Interestingly, measured data from the face before and after hydration manifested relatively higher variation than from the forearm. These results suggest that it is possible to evaluate the skin elasticity considering the changes of stratum corneum and epidermis by using various suction pressure and skin hydration.

A Study on the Hydration Characteristics and Fundamental Properties of Ternary Blended Cement Using Ferronickel Slag (페로니켈슬래그 및 고로슬래그 미분말을 결합재로 사용한 삼성분계 시멘트의 수화 특성 및 기초물성에 관한 연구)

  • Cho, Won-Jung;Kim, Han-Sol;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제8권1호
    • /
    • pp.39-48
    • /
    • 2020
  • The present study investigates the chemical reaction and performance of ternary blended binders by mixing ferronickel slag. Cement was replaced using ground granulated blast furnace slag and ferronickel slag, combined up to 50% of the replacement rate. The blended cements were tested by setting times, length change, compressive strength at 1, 3, 7, 28 days. X-ray diffraction and scanning electron microscope were conducted for detecting hydration products while the MIP and microhydation heat were used for examining morphological characteristics. The results showed that by adding ferronickel slag, Pozzolanic reaction occurred, forming a dense pore structure and the effect of reducing hydration heat and dry shrinkage was also found. The compressive strength at 28 days was lower than that of 100% OPC control specimen (OSP0), but ternary blended cements showed no significant difference compared to binary blended (OSP50). If the optimal mix is derived later and used for the purpose, the potential for use as a cement binder is expected.

Strength Estimation Model of Early-Age Concrete Considering Degree of Hydration and Porosity (수화도와 공극률을 고려한 초기재령 콘크리트의 강도 예측 모델)

  • 황수덕;이광명;김진근
    • Journal of the Korea Concrete Institute
    • /
    • 제14권2호
    • /
    • pp.137-147
    • /
    • 2002
  • Maturity models involving curing temperature and curing ages have been widely used to predict concrete strength, which can accurately estimate concrete strength. However, they may not consider physical quantities such as the characteristics of hydrates and the capillary porosity of microstructures associated with strength development. In order to find out the effects of both factors on a strength increment, the hydration model and the estimation method of the amount of capillary porosity were established, and the compressive strength test of concrete nth various water/cement ratios was carried out considering two test parameters, curing temperature and curing age. In this study, by analyzing the experimental results, a strength estimation model for early-age concrete that can consider the microstructural characteristics such as hydrates and capillary porosity was proposed. Measured compressive strengths were compared with estimated strengths and good agreements were obtained. Consequently, the proposed strength model can estimate compressive strength of concrete with curing age and curing temperature within an acceptable error.

Fundamental Properties and Hydration Characteristics of Mortar Based on MgO Added Industrial By-products (산업부산물을 첨가한 MgO 기반 모르타르의 기초물성 및 수화특성에 관한 연구)

  • Hong, Sung-Gul;Kim, Do-Young;Lee, Dong-Sik
    • Journal of the Korea Concrete Institute
    • /
    • 제25권5호
    • /
    • pp.565-572
    • /
    • 2013
  • Hydration and physical characteristics of chemically-bonded phosphate ceramic (CBPC) binder based on dead-burned Mg-O with six different blends are investigated for efficient repair construction material by retarding set phase with $H_3BO_3$. The test specimen of the blender with silica fume shows higher compressive strength after 75 days. The CBPC with silica fume results in higher modulus of rupture that others. The test specimens of CBPC eludes lower calcium ion than that of OPC (Ordinay Portland Cement). The X-ray diffraction pattern shows that hydration results in the formation of magnesium hydroxide, M-S-H gel and $MgCO_3$ for the specimen with silica fumes. Combination with calcium for MgO is not desirable due to no formation of chemical bond between two components. Based on the experimental program, the mixture of MgO and silica fume shows efficient performance in strength and durability.