• Title/Summary/Keyword: Hybrid switch

Search Result 136, Processing Time 0.027 seconds

A New Hybird Control Scheme Using Active-Clamped Class-E Inverter with Induction Heating Jar for High Power Applications

  • Lee, Dong-Yun;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a new hybrid control scheme using Active-Clamped Class-E(ACCE) inverter for the Induction Heating (IH) jar. The proposed hybrid control scheme has characteristics, which acts as class-E inverter at lower switch voltage and ACCE inverter at higher switch voltage than reference voltage of the main switch by feeding back voltage of the switch. The proposedv hybrid control scheme also has advantage of conventional ACCE inverter such as Zero-Voltage-Switch(ZVS) of the main switch and the reduced switch voltage due to clamping cricuit. Moreover, the proposed hybrid control method using ACCE inverter has higher output power than convenional control scheme since ACCE inverter operates like class-E inverter at low input voltage condition. The principles of the proposed control are explained in detail and the validity of the proposed control scheme is verifed through the several interesting simulated and experimental results.

Hybrid LVDC Circuit Breakers (저압직류용 하이브리드 차단기)

  • Hyo-Sung, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.489-497
    • /
    • 2022
  • This work investigates the commutation characteristics of the current flowing through an electrical-contact-type switch to the semiconductor switch branch during the breaking operation of hybrid DC switchgear. A simple, reliable, low-cost natural commutation method is proposed, and the current commutation characteristics are analyzed in accordance with the conduction voltage drop of the semiconductor switch branch through experiments. A prototype 400 V/10 A class natural commutation type hybrid DC switchgear is set up. Its performance is verified, and its characteristics are analyzed.

Applications of MEMS-MOSFET Hybrid Switches to Power Management Circuits for Energy Harvesting Systems

  • Song, Sang-Hun;Kang, Sungmuk;Park, Kyungjin;Shin, Seunghwan;Kim, Hoseong
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.954-959
    • /
    • 2012
  • A hybrid switch that uses a microelectromechanical system (MEMS) switch as a gate driver of a MOSFET is applied to an energy harvesting system. The power management circuit adopting the hybrid switch provides ultralow leakage, self-referencing, and high current handling capability. Measurements show that solar energy harvester circuit utilizing the MEMS-MOSFET hybrid switch accumulates energy and charges a battery or drive a resistive load without any constant power supply and reference voltage. The leakage current during energy accumulation is less than 10 pA. The power management circuit adopting the proposed hybrid switch is believed to be an ideal solution to self-powered wireless sensor nodes in smart grid systems.

Improved Control Strategy Based on Space Vectors for Suppressing Grid-Side Current Harmonics in Three-Phase Current Source Rectifiers with a Hybrid Switch

  • Xu, Yan;Lu, Guang-Xiang;Jiang, Li-Jie;Yi, Gui-Ping
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.497-503
    • /
    • 2015
  • This paper analyses the harmonic pollution to power grids caused by several high-power rectifiers, summarizes the requirements for rectifiers in suppressing grid-side current harmonics and optimizes a new-type of current source PWM rectifier with a hybrid switch. The rectifier with a hybrid switch boasts significant current characteristics and cost advantages in the high-power area. To further enhance the working frequency of the current source rectifier with a hybrid switch for suppressing grid-side harmonics and reducing the inductance size, this paper proposes an optimal control strategy based on space vector. It also verifies that the optimal control strategy based on space vector can reduce the total harmonic distortion of the grid-side current of the rectifier with a hybrid switch via circuit simulation and experimental results.

Inverted Pendulum 제어를 위한 새로운 하이브리드 퍼지게인스케쥴링 제어기의 설계

  • 정병태;박재삼
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.03a
    • /
    • pp.235-246
    • /
    • 1997
  • Hybrid fuzzy gain scheduling controller is composed of a PD control and a fuzzy control for taking the advantage of each scheme. The key structure of the hybrid fuzzy gain scheduling control scheme is so called a switch which calculates weighting values between the fuzzy controller and the PD controller. However, due to the requirement of the switch , the hybrid fuzzy gain scheduling control scheme needs extra fuzzy logic processing, thus the structure is complicated. and requires more calculation time. To eliminate the drawbacks, a new hybrid fuzzy gain scheduling control scheme is proposed in this paper. In the proposed scheme, the membership function, for calculating of weithting value, and the input and output membership functions are combined. Thus the proposed hybrid scheme does not require switch for calculation of weighting value, and as a result, the calculation time is faster and the structure is more simple than the existing hybrid controller. Computer simulation results for an inverted pendulum model under Pole-Placement PID controller, fuzzy gain scheduling controller,existing hybrid controller , and proposed hybrid controller are compared to demonstrate the good property of the proposed hybrid controller.

Design of a Dynamically Reconfigurable Switch for Hybrid Network-on-Chip Systems (Hybrid Noc 시스템을 위한 재구성 가능한 스위치 설계)

  • Lee, Dong-Yeol;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8B
    • /
    • pp.812-821
    • /
    • 2009
  • This paper proposes a novel dynamically reconfigurable switch for various multimedia applications in hybrid NoC systems. Current NoC systems, which adopt hybrid NoC structure with fixed switch and job distribution algorithms, require designers to precisely predict the property of applications to be processed. This paper proposes a reconfigurable switch which minimizes buffer overflow in various multimedia applications running on an NoC system. To verify the performance of the proposed system, we performed experiments on various multimedia applications running on embedded systems, such as MPEG4 and MP3 decoder, GPS positioning system, and OFDM demodulator. Experimental results show that buffer overflow has been decreased by 41.8% and 29.0%, respectively, when compared with NoC systems having sub-clusters with mesh or star topology. Power usage has been increased by 2.3% compared with hybrid NoC systems using fixed switches, and chip area has been increased from -0.6% to 5.7% depending on sub-cluster topology.

A New Hybrid Control Scheme with Active-Clamped Class-E Inverter system of Induction Heating Jar for High Power Applications (고 전력 응용을 위한 유도가열 Jar용 Active-Clamped Class-E 인버터 시스템의 새로운 Hybrid 제어 기법)

  • Lee, Dong-Yun;Lee, Min-Kwang;Hyun, Dong-Seok;Kim, Jung-Chul;Choi, Ick
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1009-1011
    • /
    • 2001
  • This paper presents a new hybrid control scheme using Active-Clamped Class-E (ACCE) inverter of induction heating(IH) jar for high power applications. The proposed hybrid control scheme has characteristics, which act as class-E inverter at lower switch voltage and ACCE inverter at higher switch voltage than reference voltage of the main switch by feeding back voltage one as well as advantages of conventional ACCE inverter such as zero-voltage switching(ZVS) of the main switch and the reduced switch voltage due to the clamping circuit. Moreover, the proposed control method makes higher output power than conventional ACCE inverter control one since ACCE inverter is operated like class-E inverter at low voltage condition. The principle of the proposed control are explained in detail and the validity of the proposed control scheme is verified through the several interesting simulated and experimental results.

  • PDF

Hybrid Algorithm of Space Time and Space Frequency Block Coding Technique using Alternate Time Switch (교번 스위치를 활용한 시공간 및 주파수공간 블록 코딩의 하이브리드 알고리즘)

  • Jung, Hyeok Koo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • This paper proposes a hybrid algorithm of space-time block coding and space-frequency block coding using alternate time switch. The traditional alternate time-switched space-time or space-frequency block coding technique for orthogonal frequency division multiplexing system does not provide a good performance with a variety of communication environments. This hybrid algorithm has searched good performance ranges in various environments in view points of mobile speed and doppler frequency. In this paper, we investigate better performance ranges for two algorithms, suggest a hybrid algorithm for dynamically changing communication environments, propose a structure for transmitter and receiver, and show that its performance is better than the traditional algorithm by simulations.

Reliability Enhancement of Hybrid Superconducting Fault Current Limiter adopting Power Electric Device (전력용 반도체 소자를 적용한 하이브리드 초전도 한류기 동작 신뢰도 향상)

  • Sim, J.;Park, K.B.;Lim, S.W.;Kim, H.R.;Lee, B.W.;Oh, I.S.;Hyun, O.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.57-61
    • /
    • 2007
  • The current limiting characteristics of hybrid SFCL with additional power electronic devices was investigated in order to improve operation reliabilities. The hybrid SFCL developed consists of a superconducting trigger (S/T) part, a fast switch (F/S) module and a current limiting (C/L) part. Although hybrid SFCL had shown a excellent current limiting characteristics, this device was rather vulnerable to the residual arc currents which could exist during fast switch operation. This undesirable arc should be extinguished as quickly as possible in order to implement perfect fault current commutation. So, in order to eliminate the residual arcs between fast switch contacts, the power electronic devices (IGBT or GTO) were connected in series between the S/T part and the interrupter of the F/S module. According to the fault tests conducting with an input voltage of $270\;V_{rms}$ and a fault current of $5\;kA_{rms}$, The power electronic devices could perfectly remove the arc generated between the contacts of the interrupter within 4 ms after the fault occurred. From the test analysis, it was confirmed that the hybrid SFCL could enhance the operation reliability by adopting additional power electronic devices.

A Study on Performance Improvement of Hybrid Energy Storage System for Mild HEV (마일드 하이브리드 차량용 복합형 에너지 저장장치의 성능개선에 관한 연구)

  • Lee, Back-Haeng;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1763-1769
    • /
    • 2007
  • To improve the cycle-life and efficiency of an energy storage system for HEV, a dynamic control system consisted of a switch between a battery and an ultracapacitor module is proposed, which is appropriate for mild hybrid vehicle with 42V power net. The switch can be controlled based on the status of the battery and the ultracapacitor module, and a control algorithm that could largely decrease the number of high charging current peak is also implemented. Therefore the cycle life of the battery can be improved such that it is suitable for a mild hybrid vehicle with frequent engine start-stop and regenerative-braking. Also, by maximizing the use of the ultracapacitor, the system efficiency during high current charging and discharging operation is improved. Finally, this system has the effects that improves the efficiency of energy storage system and reduces the fuel consumption of a vehicle. To verify the validity of the proposed system, this paper presented cycles test results of different energy storage systems: a simple VRLA battery, hybrid energy Pack (HEP, a VRLA battery in Parallel with Ultracapacitor) and a HEP with a switch that controlled by energy management system (EMS). From the experimental result, it was proved the effectiveness of the algorithm.