• 제목/요약/키워드: Hybrid simulation

검색결과 1,865건 처리시간 0.026초

디지털 하이브리드 이미지 존재론에 관한 연구 (A Study on the Aesthetic Ontology of Digital Hybrid Image)

  • 정헌
    • 한국콘텐츠학회논문지
    • /
    • 제19권1호
    • /
    • pp.117-124
    • /
    • 2019
  • 이 논문은 디지털 테크놀러지가 영화 이미지의 미학적 존재론을 어떻게 변화시키고 있는지에 대해 다룬다. 영화 예술의 물질적 기초로서 셀룰로이드 필름을 통한 이미지 생산과 소비의 시대는 이미 막을 내렸다. 컴퓨터와 인터넷 시대의 도래는 영화의 세계에 새로운 이미지 존재론의 출현을 불가피하게 만든다. 오늘날 디지털 시네마 시대에 벤야민의 기계 복제 개념을 재해석할 필요가 있다. 필름 이미지의 기계 복제는 컴퓨터 시뮬레이션에 기초한 디지털 합성 개념으로 변형된다. 또한, 디지털 테크놀러지는 영화의 몽타주 미학에 중대한 변화를 초래한다. 쇼트들의 시간적 연결에 기초한 필름의 몽타주 미학은 컴퓨터 데이터와 픽셀 이미지의 공간적 시뮬레이션에 기초한 '디지털 꼴라주' 미학으로 변화한다. 이 논문은 영화적 환영과 표현의 미학이 확장되는 디지털 하이브리드 이미지 존재론을 탐구함으로써 기존 연구와의 차별성을 제시한다.

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.

Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation

  • Phillips, Brian M.;Takada, Shuta;Spencer, B.F. Jr.;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1081-1103
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) has emerged as an important tool for testing large and complex structures with a focus on rate-dependent specimen behavior. Due to the real-time constraints, accurate dynamic control of servo-hydraulic actuators is required. These actuators are necessary to realize the desired displacements of the specimen, however they introduce unwanted dynamics into the RTHS loop. Model-based actuator control strategies are based on linearized models of the servo-hydraulic system, where the controller is taken as the model inverse to effectively cancel out the servo-hydraulic dynamics (i.e., model-based feedforward control). An accurate model of a servo-hydraulic system generally contains more poles than zeros, leading to an improper inverse (i.e., more zeros than poles). Rather than introduce additional poles to create a proper inverse controller, the higher order derivatives necessary for implementing the improper inverse can be calculated from available information. The backward-difference method is proposed as an alternative to discretize an improper continuous time model for use as a feedforward controller in RTHS. This method is flexible in that derivatives of any order can be explicitly calculated such that controllers can be developed for models of any order. Using model-based feedforward control with the backward-difference method, accurate actuator control and stable RTHS are demonstrated using a nine-story steel building model implemented with an MR damper.

765 kV 송전선로 보호를 위한 아크사고 시뮬레이션 및 적응적 자동재폐로 대책 (The Arcing Faults Simulation and Adaptive Autoreclosure Strategy for 765 kV Transmission Line Protection)

  • 안상필;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1365-1373
    • /
    • 1999
  • In many countries including Korea, in order to transmit the more electric power, the higher transmission line voltage is inevitable. So, a rapid reclosing scheme is important for EHV/UHV transmission lines to ensure requirements for high reliability of main lines. A critical aspect of reclosing operation is the extinction of the secondary arc since it must extinguish before successful reclosure can occur. Therefore the accurate simulation techniques of arcing faults are of importance. And successful reclosing switching can be accomplished by adopting a proper method such as HSGS and hybrid scheme to reduce the secondary arc extinction time. First of all, this paper discusses a suggested arc model, which have time dependent resistance for primary arc and piecewise linear approximated arc model for secondary arc. And this simulation technique is applied to Korean 765 kV transmission lines. Also hybrid scheme is simulated and evaluated for the purpose of shortening dead time. For adaptive reclosing scheme, variable dead time control algorithm is suggested. Two kinds of algorithm are tested. One is max tracking algorithm and the other is rms tracking algorithm. According to simulation results, rms tracking has less errors than max tracking. Therefore rms tracking is applied to Korean 765 kV transmission lines with hybrid scheme.

  • PDF

산업폐수열원 이용 증기압축식/흡수식 하이브리드 히트펌프 시스템의 시뮬레이션 (Simulation of Compression/Absorption Hybrid Heat Pump System using Industrial Wastewater Heat Source)

  • 백영진;박성룡;장기창;라호상
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1117-1125
    • /
    • 2004
  • In this study, in order to utilize the waste heat of industrial wastewater in the range of the relatively low temperature of 40~5$0^{\circ}C$ as a heat source, a hybrid heat pump system was considered by computer simulation method. In the simulation, an absorber, desorber and solution heat exchanger were modelled by UA values while a compressor and pump performance were specified by an isentropic efficiency. Simulation results show that the performance of hybrid heat pump can be up to 80% higher than that of conventional R134a heat pump when it makes a process hot water of 9$0^{\circ}C$ while the wastewater is cooled down to 2$0^{\circ}C$. As the absorber pressure increases, the system performance and deserter pressure increase with a favorable effect of a compressor discharge gas temperature drop.

하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석 (Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity)

  • 강민재;정재환;조석규;허재욱;김상현;이상봉
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

  • Elshiyab, Shareen H;Nawafleh, Noor;Ochsner, Andreas;George, Roy
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권1호
    • /
    • pp.65-72
    • /
    • 2018
  • PURPOSE. The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS. Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between $5^{\circ}C$ and $55^{\circ}C$. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS. All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION. When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments.

System of Systems Approach to Formal Modeling of CPS for Simulation-Based Analysis

  • Lee, Kyou Ho;Hong, Jeong Hee;Kim, Tag Gon
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.175-185
    • /
    • 2015
  • This paper presents a system-of-systems (SoS) approach to the formal modeling of a cyber-physical system (CPS) for simulation-based analysis. The approach is based on a convergence technology for modeling and simulation of a highly complex system in which SoS modeling methodology, hybrid systems modeling theory, and simulation interoperation technology are merged. The methodology maps each constituent system of a CPS to a disparate model of either continuous or discrete types. The theory employs two formalisms for modeling of the two model types with formal specification of interfaces between them. Finally, the technology adapts a simulation bus called DEVS BUS whose protocol synchronizes time and exchange messages between subsystems simulation. Benefits of the approach include reusability of simulation models and environments, and simulation-based analysis of subsystems of a CPS in an inter-relational manner.

Power control strategies of a DC-coupled hybrid power system for a building microgrid

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제25권3호
    • /
    • pp.50-64
    • /
    • 2011
  • In this paper, a DC-coupled photovoltaic (PV), fuel cell (FC) and ultracapacitor hybrid power system is studied for building microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. The main weak point of the FC system is slow dynamics, because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. A power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build an autonomous system with pragmatic design, and a dynamic model proposed for a PV/FC/UC bank hybrid power generation system. A simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow. The system performance under the different scenarios has been verified by carrying out simulation studies using a practical load demand profile, hybrid power management and control, and real weather data.