• 제목/요약/키워드: Hybrid resin

검색결과 330건 처리시간 0.023초

Hybrid Glass Ionomer cement의 비커스경도와 간접인장강도에 관한 연구 (A STUDY ON THE VICKER'S HARDNESS AND DIAMETRAL TENSILE STRENGTH OF HYBRID GLASS IONOMER)

  • 권균원;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권2호
    • /
    • pp.505-518
    • /
    • 1997
  • The objective of this investigation was to compare the effects of water storage on the aspect of hardness and diametral tensile strengths of four hybrid glass ionomer cements(two compomers and two resin-reinforced glass ionomers) with a resin composite material. One composite resin(Degufill Ultra), two compomers(Dyract, Compoglass Cavifil), and two resin-reinforced glass ionomers(Fuji Duet, Vitremer) were used in this study. Cylindrical specimens were prepared and stored at $36{\pm}1^{\circ}C$ in distilled water for 10 minutes after set, and then tested on an Instron testing machine(No.4467) at 1.0 mm/min displacement rate. Vicker's hardness and diametral tensile strengths as time elapsed were measured after aging in water for 10 minutes, 1 hour, 3 hours, 1 day, 3 days, 5 days and 7 days at $36{\pm}1^{\circ}C$. During the test of diametral tensile strength, stress-strain curves were obtained, from which the compressive modulus were calculated and compared. The structure of four set glass ionomer cement mass was observed on SEM(Hitachi, S-2300) after being etched with 9.6% hydrofluoric acid for 1 minute. The results were as follows; 1. The hardness of the experimental group(compomer and the resin reinforced glass ionomer cement) did not exceed the value of control group(Degufill Ultra). 2. Vicker's hardness of the Fuji Duet tended to increase succeedingly, Dyract was decreased after 3 hours in water, and Vitremer was the lowest. 3. The control group(Degufill Ultra) presented progressively on increased diametral tensile strength with time, Fuji Duet were decreased after 3 days, Compoglass Cavifil and Vitremer were decreased after 5 days in water storage. 4. Compressive modulus of the control group(Degufill Ultra) and Dyract were increased sharply timely, Fuji Duet and Vitremer were increased smoothly by lapse of time in water. Fuji Duet were stronger than Vitremer. On the other hand, Vitremer exhibited the lowest toughness. 5. The microstructure of compomer was similar with that of the composite resin(Degufill Ultra), and the fillers in resin-reinforced glass ionomer cements were noticed. It can be concluded that mechanical properties of hybrid glass ionomer cements is weaker than composite resin, and that the compomers or the resin-reinforced glass ionomers can not substitute the composite resins. A plenty of considerations should be done on the application of them to the area under the loading and high wear has a little adverse effect on the mechanical properties on the water storage for 7 days. The further research should be needed to confirm the advantage of the compomer.

  • PDF

Influence of a silane coupling agent on the optoelectrical properties of carbon nanotube/binder hybrid thin films

  • Han, Joong-Tark;Woo, Jong-Seok;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.90-94
    • /
    • 2011
  • We present the effect of a coupling agent on the optoelectrical properties of few-walled carbon nanotube (FWCNT)/epoxy resin hybrid films fabricated on glass substrates. The FWCNT/epoxy resin mixture solution was successfully prepared by the direct mixing of a $HNO_3$-treated FWCNT solution and epoxy resin. FWCNT/binder hybrid films containing different amounts of the coupling agent were then fabricated on UV-ozone-treated glass substrates. To determine the critical binder content ($X_c$), the effects of varying the binder content in the FWCNT/silane hybrid films on their optoelectrical properties were investigated. In this system, the $X_c$ value was approximately 75 wt%. It was found that above $X_c$, the coupling agent effectively decreased the sheet resistance of the films. From microscopy images, it was observed that by adding the coupling agent, more uniform FWCNT/binder films were formed.

자외선 경화형 폴리우레탄 아크릴레이트 수지의 반응성 희석제 함량에 따른 물성 연구 (Study on the Properties of UV-curable Polyurethane acrylate with reactive diluents content)

  • 심재학;서은선;이원영;김구니
    • 접착 및 계면
    • /
    • 제18권4호
    • /
    • pp.159-165
    • /
    • 2017
  • 본 연구에서는 반응성 희석제로 사용되는 BA의 함량에 따른 자외선 경화형 폴리우레탄 아크릴레이트 수지를 제조하여 수지의 열적 기계적 성질, 접착강도, 굴곡성을 확인하였다. BA의 함량이 40% 이상으로 증가할수록 Polyol의 Tg와 아크릴 수지의 Tg가 분리되어 나타난 것을 DSC로 통해 확인하였다. 또한 BA의 함량이 증가할수록 아크릴 수지의 낮은 기계적인 물성이 주도적으로 발현되어 인장강도와 신장률, 접착강도가 감소하는 것으로 나타났다. 굴곡성을 평가한 결과 BA의 함량이 40%인 경우 경도가 낮으면서 다른 수지에 비해 Tm이 낮아 굴곡성이 우수한 것으로 나타났다.

A 3-year retrospective study of clinical durability of bulk-filled resin composite restorations

  • Muhittin Ugurlu;Fatmanur Sari
    • Restorative Dentistry and Endodontics
    • /
    • 제47권1호
    • /
    • pp.5.1-5.11
    • /
    • 2022
  • Objectives: This study aimed to assess the clinical longevity of a bulk-fill resin composite in Class II restorations for 3-year. Materials and Methods: Patient record files acquired from the 40 patients who were treated due to needed 2 similar sizes Class II composite restorations were used for this retrospective study. In the experimental cavity, the flowable resin composite SDR was inserted in the dentinal part as a 4 mm intermediate layer. A 2 mm coverage layer with a nano-hybrid resin composite (CeramX) was placed on SDR. The control restoration was performed by an incremental technique of 2 mm using the nano-hybrid resin composite. The restorations were blindly assessed by 2 calibrated examiners using modified United States Public Health Service criteria at baseline and 1, 2, and 3 years. The data were analyzed using non-parametric tests (p = 0.05). Results: Eighty Class II restorations were evaluated. After 3-years, 4 restorations (5%) failed, 1 SDR + CeramX, and 3 CeramX restorations. The annual failure rate (AFR) of the restorations was 1.7%. The SDR + CeramX group revealed an AFR of 0.8%, and the CeramX group an AFR of 2.5% (p > 0.05). Regarding anatomical form and marginal adaptation, significant alterations were observed in the CeramX group after 3-years (p < 0.05). The changes in the color match were observed in each group over time (p < 0.05). Conclusions: The use of SDR demonstrated good clinical durability in deep Class II resin composite restorations.

Microleakage and characteristics of resin-tooth tissues interface of a self-etch and an etch-and-rinse adhesive systems

  • Xuan Vinh Tran;Khanh Quang Tran
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.30.1-30.13
    • /
    • 2021
  • Objectives: This study was conducted to compare the microleakage and characteristics of the resin-tooth tissue interface between self-etch and etch-and-rinse adhesive systems after 48 hours and 3 months. Materials and Methods: 40 extracted premolar teeth were randomly divided into 2 groups: 1-step self-etch adhesive system - OptibondTM All-In-One, and 2-step etch-and-rinse adhesive system - AdperTM Single Bond 2. Both groups were subjected to 500 thermocycles (5℃-55℃) before scanning electron microscope (SEM) analysis or microleakage trial at 48-hour and 3-month time periods. Results: SEM images showed the hybrid layer thickness, diameter, and length of resin tags of the self-etch adhesive (0.42 ± 0.14 ㎛; 1.49 ± 0.45 ㎛; 16.35 ± 14.26 ㎛) were smaller than those of the etch-and-rinse adhesive (4.39 ± 1.52 ㎛; 3.49 ± 1 ㎛; 52.81 ± 35.81 ㎛). In dentin, the microleakage scores of the 2 adhesives were not different in both time periods (48 hours/3 months). However, the microleakage score of etch-and-rinse adhesive increased significantly after 3 months (0.8 ± 0.63 and 1.9 ± 0.88, p < 0.05). Conclusions: The self-etch adhesive exhibited better long-term sealing ability in dentin when compared to that of the etch-and-rinse adhesive. The greater hybrid layer thickness and dimensions of resin tags did not guarantee reliable, long-lasting sealing in the bonding area.

새로운 반도체 Packaging용 Ethoxysilyl Bisphenol A Type Epoxy Resin System의 경화특성 연구 (Cure Characteristics of Ethoxysilyl Bisphenol A Type Epoxy Resin Systems for Next Generation Semiconductor Packaging Materials)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.19-26
    • /
    • 2017
  • The cure properties of ethoxysilyl bisphenol A type epoxy resin (Ethoxysilyl-DGEBA) systems with different hardeners were investigated, comparing with DGEBA and Diallyl-DGEBA epoxy resin systems. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The Ethoxysilyl-DGEBA epoxy resin system showed lower cure conversion rates than DGEBA and Diallyl-DGEBA epoxy resin systems. The conversion rates of these epoxy resin systems with DDM hardener are lower than those with HF-1M hardener. It can be considered that the optimum hardener for Ethoxysilyl-DGEBA epoxy resin system is Phenol Novolac type. These lower cure conversion rates in the Ethoxysilyl-DGEBA epoxy resin systems could be explained by the retardation of reaction molecule movements according to the formation of organic-inorganic hybrid network structure by epoxy and ethoxysilyl group in Ethoxysilyl- DGEBA epoxy resin system.

  • PDF

Developement of the reinforced acrylic-based hybrid denture composite resin with vinyloligosilsesquioxane (POSS)

  • Nam, Kwang-Woo;Chang, Myung-Woo;Chang, Bok-Sook;Han, Dong-Hoo;Shim, June-Sung;Chang, Ik-Tae;Heo, Seong-Joo;An, Jung-Ho;Chung, Dong-June
    • 대한치과보철학회지
    • /
    • 제38권6호
    • /
    • pp.782-790
    • /
    • 2000
  • The mainly used polymeric material for the denture is PMMA because of its cost and easiness to handle. So it was widely used material among dentists for past decades. But the acrylic-based denture materials have several common weak points such as shrinkage after curing and lack of strength. In order to solve these problems, we adapted one of hybrid system using acrylic polymer and vinyloligosilsesquioxane(POSS). POSS, which is a well known expandable monomer during polymerization process, may eventually suppress volumetric shrinkage. And the hybrid system makes it possible for the polymer to be stable in various severe conditions. Eight different kinds of samples were designed and synthesized. Each samples were characterized with dynamic mechanical analyser(DMA) to confirm their thermodynamic properties, fractured to analyze the cross-sectional morphology of the samples. And elongation, flexural and impact tests were also executed to evaluate the mechanical properties of the samples. From the results, hybrid composites had well defined crosslinked network structure compared to the widely used denture materials, and the mechanical strength improved without changing any surface condition as increment with POSS ratio in hybrid system. Fractured morphology showed homogeneous surfaces in spite of mutli component system, therefore we can conclude that the adoption of the POSS brought the reinforcement of the denture resin.

  • PDF

Characterization of a Hybrid Cu Paste as an Isotropic Conductive Adhesive

  • Eom, Yong-Sung;Choi, Kwang-Seong;Moon, Seok-Hwan;Park, Jun-Hee;Lee, Jong-Hyun;Moon, Jong-Tae
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.864-870
    • /
    • 2011
  • As an isotropic conductive adhesive, that is, a hybrid Cu paste composed of Cu powder, solder powder, and a fluxing resin system, has been quantitatively characterized. The mechanism of an electrical connection based on a novel concept of electrical conduction is experimentally characterized using an analysis of a differential scanning calorimeter and scanning electron microscope energy-dispersive X-ray spectroscopy. The oxide on the metal surface is sufficiently removed with an increase in temperature, and intermetallic compounds between the Cu and melted solder are simultaneously generated, leading to an electrical connection. The reliability of the hybrid Cu paste is experimentally identified and compared with existing Ag paste. As an example of a practical application, the hybrid Cu paste is used for LED packaging, and its electrical and thermal performances are compared with the commercialized Ag paste. In the present research, it is proved that, except the optical function, the electrical and thermal performances are similar to pre-existing Ag paste. The hybrid Cu paste could be used as an isotropic conductive adhesive due to its low production cost.

Microstructures and Thermal Properties of Polycaprolactone/Epoxy Resin/SiO2 Hybrids

  • He, Lihua;Liu, Pinggui;Ding, Heyan
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.32-38
    • /
    • 2006
  • A series of organic-inorganic hybrids, PCL/EP/$SiO_2$, involving epoxy resin and triethoxysilane-terminated polycaprolactone elastomer (PCL-TESi) were prepared via polymerization of diglycidyl ether of bisphenol A (DGEBA) with amine curing agent KB-2 and sol-gel process of PCL-TESi. The curing reactions were started from the initially homogeneous mixture of DGEBA, KB-2 and the PCL-TESi. The organicinorganic hybrids containing up to 4.95% (wt) of $SiO_2$ were obtained and characterized by FT-IR, transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). It was experimentally shown that the swelling property in toluene, morphologies and thermal properties of the resulting hybrids were quite dependent on the contents of $SiO_2$. The crosslink network density decreases with increasing of the PCL-TESi. And in TEM, the phase separated morphology of these hybrids was found, which resulted from the coagulation of Si-O-Si networks resulting from $-Si(OC_2H_5)_3$ of PCL-TESi self-curing by hydrolytic silanol condensation, with the advancement of the curing reaction in the modified epoxy resin systems. Meanwhile, the change of the $SiO_2$ content made the morphologies changed from aggregated particles of Si-O-Si in the hybrid to nanocluster of interconnected Si-O-Si particles, then to aggregated Si-O-Si dispersing in the continuous cured epoxy phase again, and last to co-continuous interpenetrating network. The glass transition behavior of the hybrid material was cooperative motion of large chain segments, which were hindered by the inorganic Si-O-Si network. And in TG analysis, the characteristic temperature at 5% of weight loss was evidently increased from $120.5^{\circ}C$ of pure cured epoxy to $277.6^{\circ}C$ of 3.84% (wt) of $SiO_2$ modified epoxy due to the existence of Si-O-Si when PCL-TESi was added in the hybrid.

  • PDF

레진접착제를 도포한 상아질에 대한 합착용 시멘트의 전단결합강도 (SHEAR BOND STRENGTH OF LUTING CEMENTS TO DENTIN TREATED WITH RESIN BONDING AGENTS)

  • 김교철;최부병
    • 대한치과보철학회지
    • /
    • 제36권1호
    • /
    • pp.26-49
    • /
    • 1998
  • The purpose of this study was to confirm the formation of hybrid layer and resin tags in dentin tissue and the possibility of bonding between luting cements used for the prosthesis and the resinous surface coated with resin bonding agents to prevent the dentin hypersensitivity after abutment preparation. Some resin bonding agents, which may have the possibility of bonding with polyacrylic acid as a liquid ingredient of polycarboxylate and glass ionomer cements, were selected. All-Blond desensitizer containing NTG-GMA and BPDM, Scotch-Bond Multipurpose plus containing HEMA, and XR-bond containing organophosphate were selected as a coating agent. Dental cements were zinc phosphate, polycarboxylate, and glass ionomer cement. After the exposed dentin surface of premolars was ethced with 10% phosphoric acid and coated with resin bonding agents, the morphology of treated surfaces and the resin tags and hybrid layers on sectioned surfaces were observed by SEM. Shear bond strength between the resin bonding agents and 3 kinds of cements was measured 24 hours after bonding. On the debonded surfaces of the shear bond strength tested specimens, the cement tags and the bonding sites between the resin materials and cements were examined by SEM. Following conclusions were drawn : 1. Coating of dentin with resin bonding agents had no effect on the shear bond strength of zinc phosphate cement. 2. Both of polycarboxylate and glass ionomer cements showed the increased shear bond strength by the dentinal coating with Scotch-Bond Multipurpose plus containing HEMA. However, in the case of dentinal coating with some agents containing NTG-GMA and BPDM or organophosphate, polycarboxylate cement exhibited the lowered shear bond strength, and glass ionomer cement showed the unchanged shear bond strength. 3. Complete obstructions of dentinal tubules were observed on the dentin coated with All-Bond desensitizer or XR-bond, but distinct shape of the orifices of dentinal tubules was observed consistently on the dentin coated with Scotch-Bond Multipurpose plus. 4. The hybrid layer was thickest on the dentin coated with All-Bond desensitizer, and the length of resin tags was longest on the dentin coated with Scotch-Bond Multipurpose plus. 3. On the debonded specimens which had been bonded with polycarboxylate cement or glass ionomer cement after coating with Scotch-Bond Multipurpose plus, the cement tags and the bonding sites between the resinous surface and the cements could be examined.

  • PDF