• Title/Summary/Keyword: Hybrid mode

Search Result 728, Processing Time 0.022 seconds

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

Analysis of the Efficiency of the Compound-split Hybrid Systems (복합 유성 기어로 구성된 하이브리드 시스템 효율 분석)

  • Kim, Nam-Wook;Yang, Ho-Rim;Cho, Sung-Tae;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 2007
  • The efficiency of the hybrid systems which are composed of compound planetary gear sets depend on the amount of the recirculating energy among the motors and battery. This paper studies the analysis of the system efficiency with the parameters, ${\alpha},\;{\beta},\;{\gamma_a},\;{\gamma_b}$ and $\gamma_s$. The efficiency of the systems and the relative torque, speed and power of the power resources are represented by these parameters. The recuperating parameter $\kappa$ which makes the systems generalized is introduced, so the efficiencies of the modes such as the hybrid mode, the engine mode, the motoring mode and the recuperating mode are analyzed with simple equations. The tendency of the system efficiency according to the variations of the $\gamma_s$ and $\kappa$ are studied, by which it can be possible to reduce the loss of the power because the strategies for avoiding the singular speed ratio $\gamma_s$ are helpful for the system efficiency and specific value of $\kappa$ can increase the efficiency of the systems.

Study on Equivalent Consumption Minimization Strategy Application in PTI-PTO Mode of Diesel-Electric Hybrid Propulsion System for Ships

  • Lee, Dae-Hong;Kim, Jong-Su;Yoon, Kyoung-Kuk;Hur, Jae-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.451-458
    • /
    • 2022
  • In Korea, five major ports have been designated as sulfur oxide emission control areas to reduce air pollutant emissions, in accordance with Article 10 of the "Special Act on Port Air Quality" and Article 32 of the "Ship Pollution Prevention Regulations". As regulations against vessel-originated air pollutants (such as PM, CO2, NOx, and SOx) have been strengthened, the Ministry of Oceans and Fisheries(MOF) enacted rules that newly built public ships should adopt eco-friendly propulsion systems. However, particularly in diesel-electric hybrid propulsion systems,the demand for precise control schemes continues to grow as the fuel saving rate significantly varies depending on the control strategy applied. The conventional Power Take In-Power Take Off(PTI - PTO) mode control adopts a rule-based strategy, but this strategy is applied only in the low-load range and PTI mode; thus, an additional method is required to determine the optimal fuel consumption point. The proposed control method is designed to optimize fuel consumption by applying the equivalent consumption minimization strategy(ECMS) to the PTI - PTO mode by considering the characteristics of the specific fuel oil consumption(SFOC) of the engine in a diesel-electric hybrid propulsion system. To apply this method, a specific fishing vessel model operating on the Korean coast was selected to simulate the load operation environment of the ship. In this study, a 10.2% reduction was achieved in the MATLAB/SimDrive and SimElectric simulation by comparing the fuel consumption and CO2 emissions of the ship to which the conventional rule-based strategy was applied and that to which the ECMS was applied.

Hybrid Rule-Interval Variation(HRIV) Method for Stabilization a Class of Nonlinear Systems (비선형 시스템의 안정을 위한 HRIV 방법의 제안)

  • Myung, Hwan-Chun;Z. Zenn Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.249-255
    • /
    • 2000
  • HRIV(Hybrid Rule-Interval Variation) method is presented to stabilize a class of nonlinear systems, where SMC(Sliding Mode Control) and ADC (ADaptive Control) schemes are incorporated to overcome the unstable characteristics of a conventional FLC(Fuzzy Logic Control). HRIV method consists of two modes: I-mode (Integral Sliding Mode PLC) and R-mode(RIV method). In I-mode, SMC is used to compensate for MAE(Minimum Approximation Error) caused by the heuristic characteristics of FLC. In R-mode, RIV method reduces interval lengths of rules as states converge to an equilibrium point, which makes the defined Lyapunov function candidate negative semi-definite without considering MAE, and the new uncertain parameters generated in R-mode are compensated by SMC. In RIV method, the overcontraction problem that the states are out of a rule-table can happen by the excessive reduction of rule intervals, which is solved with a dynamic modification of rule-intervals and a transition to I-mode. Especially, HRIV method has advantages to use the analytic upper bound of MAE and to reduce Its effect in the control input, compared with the previous researches. Finally, the proposed method is applied to stabilize a simple nonlinear system and a modified inverted pendulum system in simulation experiments.

  • PDF

Design of Hybrid Mount Using Rubber and Electromagnetic Actuator with Application to Vibration Control (전자기 작동기와 고무를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Paeng, Yong-Seok;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.915-918
    • /
    • 2006
  • This paper presents an active vibration control of a 1-DOF system using a hybrid mount which consists of elastic rubber and electromagnetic actuator. After identifying stiffness, damping properties of the elastic rubber and electromagnetic element, a mechanical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system control responses such as acceleration and transmitted force of the 1 -DOF system are presented in time domain.

  • PDF

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.617-623
    • /
    • 2007
  • This paper presents an active vibration control of a dynamic system using hybrid mount which consists of elastic rubber-piezostack actuator and elastic rubber-electromagnetic actuator, respectively. After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the dynamic system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the dynamic system are experimentally evaluated and presented in time and frequency domains.

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1131-1136
    • /
    • 2007
  • This paper presents an active vibration control of a 1-DOF system using hybrid mount which consists of elastic rubber and PZT(piezostack) actuator and elastic rubber and electromagnetic actuator, respectively After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the 1-DOF system are experimentally evaluated and presented in time and frequency domains.

  • PDF

DC-shift Instability in Hybrid rocket (하이브리드 로켓의 DC-shift 불안정 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin;Monkhinoo, Monkhinoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.229-232
    • /
    • 2009
  • DC-shift phenomenon can be observed in Hybrid rocket combustion. This phenomenon makes performance drop which is structure problem or reduce thrust. Understanding of DC-shift phenomenon, the conditions of the hybrid rocket combustion stability can be found. In this paper, the condition of DC-shift was found and made by using acoustic mode and vortex shedding frequency. The conditions of stable combustion was defined from the experimental study of DC-shift phenomenon.

  • PDF

Development of the Pneumatic Service Robot with a Hybrid Type (하이브리드형의 공압 서비스 로봇의 개발)

  • Choi, Cheol-U;Choi, Hyeun-Seok;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.686-691
    • /
    • 2001
  • In this paper, the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantage of good compliance, high payload-to-weight and payload-to-volume ratios, high speed and force capabilities. Using pneumatic actuators which have low stiffness, the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory, the pneumatic service robot is evaluated and verified.

  • PDF

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material (등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.