• Title/Summary/Keyword: Hybrid inductor

Search Result 45, Processing Time 0.022 seconds

A New Parallel Hybrid Filter Configuration Minimizing Active Filter Size

  • Park, Sukin;Sung, Jeong-hyoun;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.894-897
    • /
    • 1998
  • A conventional parallel hybrid active filter has an inherent problem of large current ratings of devices used in inverter. In general, this problem has been solved by adjusting turn ratio of a matching transformer. However, making the transformer with high turn ratio may be not available for high power system due to its requirement for high voltage insulation. In this paper, a new configuration is proposed for parallel hybrid active filter. In the proposed hybrid active filter, the active filter is connected to the passive filter inductor in parallel through a matching transformer for the aim of reducing the size of inverter. Through computer simulations, we have shown the outstanding performances of the proposed topology.

  • PDF

A Hybrid Ring Coupled Varactor Reflection-type Analog Phase Shifter using an Inductor for Extending a Change in the Phase (위상확장용 인턱터를 사용한 하이브리드 링 결합 바랙터 반사형 아나로그 이상기)

  • 고성선;임계재;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.1
    • /
    • pp.71-79
    • /
    • 1990
  • An analog phase shifter is designed at the operating frequency 10GHz that is coupled with a hybrid ring and the network connecting an inductor series with a varactor to extend a continuous chage in the phase of the reflected output wave to be produced from a variation in the terminated varactor reactance as a variation in the reverse bias voltage. It is manufactured in a microstripline in consideration of an effect of the dispersion characteristics and discontinuities. As a resuls of an experiment, a change in the phase is achieved over 180 degree from $52.34^{\circ}$ degrees to $235.01^{\circ}$degrees, the transmission loss is -3.6~-14.3dB, and the return loss is -16~-8dB(1.37

  • PDF

A New Non-isolated Boost Converter with Two-Inductor and One-Transformer for Hybrid Electric Vehicle and Electric Vehicle (하이브리드 차량 및 전기 차량용 두 개의 인덕터와 하나의 변압기를 갖는 새로운 비절연형 부스트 컨버터)

  • Sung, Hyun-Wook;Park, Ki-Bum;Kim, Tae-Sung;Moon, Gun-Woo;Youn, Myung-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.132-134
    • /
    • 2007
  • 하이브리드 차량 및 전기차량 구동 모터의 권선저항에 의한 손실 및 모터의 크기를 줄이기 위해 고효율, 고승압형 DC-DC 컨버터 사용이 요구된다. 기존의 부스트 컨버터는 기생저항 성분에 의해 고승압이 불가능하여 변압기를 사용하여 승압비를 향상시킨 current-fed push-pull, current-fed full bridge, dual inductor-fed 부스트 컨버터 등으로 변형되어 사용되어 왔다. dual inductor-fed 부스트 컨버터의 경우 동일조건하에서 앞서 기술된 2가지 컨버터보다 2배의 승압비를 얻을 수 있으며 1차측 전류 스트레스가 낮은 장점을 가지고 있어 대전력, 고승압 응용에 적합하다. 하지만 변압기의 누설인덕턴스에 의한 써지성 전류/전압을 제한하기 위한 부가적인 snubber회로의 사용으로 효율을 떨어뜨리게 되는 단점을 가지고 있다. 본 논문에서는 이러한 단점을 보완할 수 있는 새로운 2개의 인덕터와 1개의 변압기를 갖는 DC-DC 컨버터를 제안한다. 제안된 컨버터의 동작원리와 모드해석을 실시하고 최종적으로 400W, 42Vdc (Battery)/400Vdc (Electric Motor) 실험결과를 통해 이를 검증한다.

  • PDF

A Study on High Performance Operation of Hybrid Energy Recovery Drive System for Piezoelectric Pump (피에조 펌프 구동용 에너지 회수형 하이브리드 구동장치 고성능 운전에 관한 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Cho, Yong-Ho;Kim, Ki-Seok;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1426-1431
    • /
    • 2015
  • Piezoelectric pump can be considered as R-C load and it needs something special driver because the output voltage does not become 0 even though the applied voltage is 0 with common converter. This operating system consists of fly-back converter to increase the input voltage and energy recovery inverter to apply square voltage to the piezoelectric pump. The energy recovery inverter can charge and discharge the energy of capacitive load. In this paper, to enhance performance of the driver, a few elements or circuits are added and modified. To drive the inverter safely, current limit resister is added and adjusted the value to valance the charging and discharging current. In addition, a current limit inductor is added to the input side to limit the input current and enhance the efficiency. Inductor only may make oscillation and another resister is added parallel to the inductor to solve this problem. The converter and inveter are assembled to one board for compactness. The appropriateness is proved with simulation and experiments.

A Hybrid PWM-Resonant DC-DC Converter for Electric Vehicle Battery Charger Applications

  • Lee, Il-Oun
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1158-1167
    • /
    • 2015
  • In this paper, a new hybrid DC-DC converter is proposed for electric vehicle 3.3 kW on-board battery charger applications, which can be modulated in a phase-shift manner under a fixed frequency or frequency variation. By integrating a half-bridge (HB) LLC series resonant converter (SRC) into the conventional phase-shift full-bridge (PSFB) converter with a full-bridge rectifier, the proposed converter has many advantages such as a full soft-switching range without duty-cycle loss, zero-current-switching operation of the rectifier diodes, minimized circulating current, reduced filter inductor size, and better utilization of transformers than other hybrid dc-dc converters. The feasibility of the proposed converter has been verified by experimental results under an output voltage range of 250-420V dc at 3.3 kW.

Versatile Shunt Hybrid Power Filter to Simultaneously Compensate Harmonic Currents and Reactive Power

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1311-1318
    • /
    • 2015
  • This paper introduces a novel topology and an effective control strategy for a shunt hybrid power filter (SHPF) to simultaneously compensate harmonic currents and reactive power. The proposed SHPF topology is composed of an LC passive filter tuned to the 7th harmonic frequency and a small-rated active filter connected in parallel with the inductor Lpf of the LC passive filter. Together with the SHPF topology, we also propose a control strategy, which consists of a proportional-integral (PI) controller for DC-link voltage regulation and a PI plus repetitive current controller, in order to compensate both the harmonic current and the reactive power without the need for additional hardware. Thanks to the effectiveness of the proposed control scheme, the supply current is sufficiently compensated to be sinusoidal and in-phase with the supply voltage, regardless of the distorted and phase lagging of the load current. The effectiveness of the proposed SHPF topology and control strategy is verified by simulated and experimental results.

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

  • Keum, Kyoseung;Piao, Haiyan;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2018
  • In this paper, a planar printed hybrid short/open-ended slot antenna with capacitive coupling feed strips is proposed for hepta-band mobile applications. The proposed antenna is comprised of a slotted ground plane on the top plane and two capacitive coupling feed strips with a chip inductor on the bottom plane. At the low frequency band, the short-ended long slot fed by strip 1 generates its half-wavelength resonance mode, whereas the T-shaped open ended slot fed by strip 2 generates its quarter-wavelength resonance mode for the high frequency band. The antenna provides a wide bandwidth covering GSM850/GSM900/DCS/PCS/UMTS/LTE2300/LTE2500 operation bands. Moreover, the antenna occupies a small volume of $15mm{\times}50mm{\times}1mm$. The operating principle of the proposed antenna and the simulation/measurement results are presented and discussed.

High Step-Up Converter with Hybrid Structure Based on One Switch

  • Hwu, K.I.;Peng, T.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1566-1577
    • /
    • 2015
  • A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

A Novel Compensator for Eliminating DC Magnetizing Current Bias in Hybrid Modulated Dual Active Bridge Converters

  • Yao, Yunpeng;Xu, Shen;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1650-1660
    • /
    • 2016
  • This paper proposes a compensator to eliminate the DC bias of inductor current. This method utilizes an average-current sensing technique to detect the DC bias of inductor current. A small signal model of the DC bias compensation loop is derived. It is shown that the DC bias has a one-pole relationship with the duty cycle of the left side leading lag. By considering the pole produced by the dual active bridge (DAB) converter and the pole produced by the average-current sensing module, a one-pole-one-zero digital compensation method is given. By using this method, the DC bias is eliminated, and the stability of the compensation loop is ensured. The performance of the proposed compensator is verified with a 1.2-kW DAB converter prototype.

Design and Behavior of Validating Surge Protective Devices in Extra-low Voltage DC Power Lines (특별저전압 직류 전원회로에 유용한 서지방호장치의 설계와 특성)

  • Shim, Seo-Hyun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.81-87
    • /
    • 2015
  • In order to effectively protect electrical and electronic circuits which are extremely susceptible to lightning surges, multi-stage surge protection circuits are required. This paper presents the operational characteristics of the two-stage hybrid surge protection circuit in extra-low voltage DC power lines. The hybrid surge protective device consists of the gas discharge tube, transient voltage suppressor, and series inductor. The response characteristics of the proposed hybrid surge protective device to combination waves were investigated. As a result, the proposed two-stage surge protective device to combination wave provides the tight clamping level of less than 50V. The firing of the gas discharge tube to lightning surges depends on the de-coupling inductance and the rate-of-change of the current flowing through the transient voltage suppressor. The coordination between the upstream and downstream components of the hybrid surge protective device was satisfactorily achieved. The inductance of a de-coupler in surge protective circuits for low-voltage DC power lines, relative to a resistance, is sufficiently effective. The voltage drop and power loss due to the proposed surge protective device are ignored during normal operation of the systems.