• Title/Summary/Keyword: Hybrid generation system

Search Result 465, Processing Time 0.029 seconds

Artificial photosynthesis the first chapter: Light driven hydrogen generation from water

  • Kang, Sang Ook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.69-69
    • /
    • 2013
  • In the area of artificial photosynthesis, particularly for the generation of hydrogen form water, much attention has been paid on organic-inorganic hybrid system. Most of all, a dye/TiO2-combined system has been suggested and its potential utility was well manifested. However, due to its complicated nature of charge interactions in between dye and TiO2 -interface there remains a great challenge to establish the charge-activity relationship, per se light driven charge generation and recombination kinetics with respect to the amount of hydrogen produced. Further complexity of that hybrid system has been witnessed when sacrificial donor and aqueous media are considered. To unveil the operating mechanism on such a dye/TiO2-combined system, we have prepared organic dyes suitable to account for the effect of sacrificial donor as well as water interactions, and prepared the typical dye-grafted TiO2 films to investigate charge-activity relationship. Femtosecond flash photolysis clearly defined the dye effects anchored on to the TiO2 platform. In addition, photodynamic data contemplated well to the dye orientation proposed by the DFT calculations. Recent findings provide fundamental understanding on the dye-grafted TiO2 system and establish a firm background how future dye-sensitized organic-inorganic hybrid system can be designed for the light driven hydrogen generation from water.

  • PDF

Performance Analysis of Hydrogen Based Hybrid System Using HOMER - a Case Study in South Korea (수소기반 신재생에너지 복합발전 시스템의 지역별 운영성과 분석 - HOMER를 활용한 사례 연구)

  • LEE, MYOUNG-WON;SON, MINHEE;KIM, KYUNG NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.606-619
    • /
    • 2018
  • This study focuses on the performance of hydrogen energy based hybrid system in terms of system reliability of electricity generation. With this aim to evaluate the off-grid system of photovoltaic (PV), wind turbine, electrolyzer, fuelcell, $H_2$ tank and storage batteries, 14 different sites in South Korea are simulated using HOMER. Performance analysis includes simulation on the different sites, verification of operational behaviors on regional and seasonal basis, and comparison among a control group. The result shows that the generation performance of hydrogen powered fuelcell is greatly affected by geographical change rather than seasonal effect. In addition, as the latitude of the hybrid systems location decrease, renewable power output and penetration ratio (%) increase under constant electrical load. Therefore, the hydrogen based hybrid system creates the stability of electricity generation, which best suits in the southern part of South Korea.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Improved Hybrid MIMO Scheme for Next Generation Communication System (차세대 통신 시스템을 위한 향상된 하이브리드 MIMO 기법)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.969-976
    • /
    • 2011
  • In this paper, a terrestrial transmission system is proposed for the next generation digital television (DTV) system by applying a hybrid multi-input multi-output (MIMO) technology based on linear dispersion codes (LDCs). The digital video broadcasting-2nd generation terrestrial (DVB-T2) system adopted a space time block code (STBC) for improving receive performance. However, the data rate of STBC is not increased in proportion to the transmitter. The hybrid STBC scheme utilizes several STBC transmission blocks for increasing data rate. It is possible to increase the data rate and performance in the receiver by utilizing LDC. The performances of the proposed and conventional hybrid STBC schemes are evaluated through computer simulations.

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

A Study on Hybrid Control Unit Using a Smart Control (스마트 제어를 이용한 하이브리드 형 제어장치 연구)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1093-1100
    • /
    • 2016
  • This study is to demonstrate the superiority and stability of the solar - wind power hybrid power generation system for street lamps using super capacitor EDLC(:Electric Double Layer Capacitor). It is aiming to apply the lighting device using LED light source as the load of solar-wind power hybrid power generation system for independent power source and to develop the street light system device with high output power generation system. Unlike conventional controllers, EDLC, which is used as an auxiliary device for storing the developed power in the battery, can guarantee the high output and long life of the battery.

Measurement of local wind and solar radiation for a hybrid power generation system design, Busan, Korea

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.799-806
    • /
    • 2013
  • As a first step to develop the hybrid power generation system, on this study, the time-variable resources of wind and solar radiation of Yeongdo, Busan, Korea had been measured during June and July 2013. And the quantity of generated wind power and solar photovoltaic had also been measured during the same period. It is found out that the wind mainly flew from southwest at the average speed of 2 m/s during 2 months. And it is clear that, because of the low wind velocity, the wind quality to generate the power seems not enough at this area. Meanwhile solar radiation was measured every daytime (6:00~19:00) and the peak solar radiation occurred around 12:00~14:00. And it is clear that the time-based variations of quantity of generated power were proportional to the variations of these resources, respectively. As a proposal, these 2 natural energies can be combined as resources of a hybrid system, because these 2 patterns are not overlapped so much on time base.

Estimation of the Optimal Generation Capacity of Solar-Wind Hybrid Power System for Economic Operations (태양광-풍력 복합발전시스템의 경제적 운용을 위한 최적 용량 산정에 관한 연구)

  • Lee, Seung-Chul;Moon, Un-Chul;Kwon, Byeong-Gook;Kim, Jong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2004
  • In this paper, a technique that estimate the optimal capacity of the solar-wind hybrid power system for minimizing the total monthly electric power expenses is presented. The hybrid power system is assumed to be operated in connection with the utility power system and electric bill be paid for the power not covered by the hybrid system generation. Monthly generation cost is estimated based on total life-cycle cost analysis. The monthly utility power bill is assumed to be increased quadratically in proportion with the net utility power consumption which is the difference between the total monthly load minus the hybrid system generations. Test results demonstrate applications potential of the proposed technique.

Control Algorithm of Hybrid System for Feeder Flow Mode Operation in Microgrid (마이크로그리드에서 하이브리드 시스템의 Feeder Flow Mode 운영을 위한 제어 알고리즘)

  • Moon, Dae-Seong;Seo, Jae-Jin;Kim, Yun-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Active power control scheme for distributed generation in microgrid consists of feeder flow control and unit power control. Feeder flow control is more useful than the unit power control for demand-side management, because microgrid can be treated as a dispatchable load at the point of common coupling(PCC). This paper presents detailed descriptions of the feeder flow control scheme for the hybrid system in microgrid. It is divided into three parts, namely, the setting of feeder flow reference range for stable hybrid system operation, feeder flow control algorithm depending on load change in microgrid and hysteresis control. Simulation results using the PSCAD/EMTDC are presented to validate the inverter control method for a feeder flow control mode. As a result, the feeder flow control algorithm for the hybrid system in microgrid is efficient for supplying continuously active power to customers without interruption.