• Title/Summary/Keyword: Hybrid fuzzy controller

Search Result 183, Processing Time 0.026 seconds

On design of a control scheme using fuzzy-neural network (퍼지-뉴럴 합성을 이용한 제어기의 설계)

  • Lim, Kwang-Woo;Cho, Hyun-Chan;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.117-122
    • /
    • 1992
  • The fuzzy-neural hybrid control system utilizing the fuzzy-neural network(FNN) will be presented in this paper. The basic structure of the controller is the parallel combination of a conventional P-controller and a FNN. Such a combination can guarantee the stability of a plant at initial stage before the rules are completely created. And a method how to automatically tunning the parameters of the FNN will be proposed with error back-propagation(BP) algorithm. Finally the effectiveness of the proposed strategy will be verified by computer simulations using a two DOF robot manipulator.

  • PDF

Sensorless Control of Induction Motor Using Fuzzy-Neural Network (퍼지-신경회로망을 이용한 유도전동기의 센서리스 제어)

  • Nam, Su-Myeong;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.177-180
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

A study of improvement of control performance of ship by fuzzy neutral network (퍼지 신경회로망에 의한 선박의 제어성능 개선에 관한 연구)

  • Kang, Chang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.671-672
    • /
    • 2008
  • Hybrid intelligent technique is used in ship steering control. It can make full use of the advantage of all kinds of intelligent algorithms. This provides an efficient way for this paper. An RBF neural network and GA optimization are employed in a fuzzy neural controller to deal with the nonlinearity, time varying and uncertain factors. Utilizing the designed network to substitute the conventional fuzzy inference, the rule base and membership functions can be auto-adjusted by GA optimization. The parameters of neural network can be decreased by using union-rule configuration in the hidden layer of the network. The ship control quality is effectively improved in case of appending additional sea state disturbance. The performance of controller is evaluated by the system simulation using Matlab.

  • PDF

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam Su-Myung;Choi Jung-Sik;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using learning mechanism-fuzzy neural network(LM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_{d}$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using LM-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using LM-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the LM-FNN and ANN controller.

Enhanced Hybrid Multi Electrical Cupping System using S-PI Controller (S-PI 제어기를 이용한 개선된 하이브리드 멀티전동부항시스템)

  • Kim, Jong-Chan;Kim, CheeYong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1400-1407
    • /
    • 2015
  • In the paper, we suggest bettered EHMECS(Enhanced Hybrid Multi Electrical Cupping System) to regulate automatically vacuum pressure using many cupping cup at once. We controlled accurately the pressure using S-PI control technique in pump motor to input the air inside cupping cup. S-PI control compared constant velocity, load and velocity variance between existing PI and FLC(Fuzzy Logic Control). The stabilization time of suggested S-PI control improve 20% of existing PI and 8% of FLC. The error constant of normal condition improved 71% of existing PI and 62% of FLC in steady speed and 80% of existing PI and 67% of FLC in load change. Also the error constant about velocity variance improve 45% of PI control. It is prove the suggested S-PI control technique. When use long time vacuum pressure of cupping cup regulated the suggested S-PI control technique, can loosen knotted muscles.

Sensorless Control of Induction Motor with Al Algorithm (Al 알고리즘을 이용한 유도전동기의 센서리스 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.123-125
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN)controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller. This paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF

MPPT Control of Photovoltaic System using HBPI Controller (HBPI 제어기를 이용한 태양광발전 시스템의 MPPT 제어)

  • Ko, Jae Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1864-1871
    • /
    • 2012
  • This paper proposes the hybrid proportional integral(HBPI) controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, in order to solve these problems, this paper proposes HBPI controller that is adjusted gain of conventional PI control using fuzzy control, and the maximum power point tracks using this controller. The validity of the controller proposed in this paper proves through the results of the comparisons.

Development of Hybrid Artificial Intelligent Controller for Induction Motor Drive (유도전동기 드라이브를 위한 하이브리드 인공지능 제어기의 개발)

  • Ko, Jae-Sub;Lee, Jung-Chul;Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Park, Bung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.188-190
    • /
    • 2005
  • This paper is proposed HAI controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Design of a hybrid fuzzy controller with the optimal auto-tuning method (최적 자동동조 방법에 의한 하이브리드 퍼지제어기의 설계)

  • Oh, Sung-Kwun;Ahn, Tae-Chon;Hwang, Hyung-Soo;Park, Jong-Jin;U, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • 퍼지논리제어기는 산업응용에 광범위하게 연구되고 있으며, 계속적으로 사용되고 있다. 그러나 퍼지집합의 조정을 통해 최적규칙을 구축하기 위하여, 시행착오에 의한 매우 능숙한 기술이 요구된다. 이 논문에서는 첫째로, 퍼지논리제어기와 기존의 PID 제어기로 구성된 하이브리드 퍼지제어기를 제안한다. 즉, 시스템의 제어 입력은 퍼지변수로서, 과도상태에서의 FLC출력과 정상상태에서의 PID 출력의 컨벡스(convex) 결합이다. 둘째로, 간략추론법과 개선된 컴플렉스방법을 이용한 강력한 자동동조알고리즘이 퍼지논리제어기의 성능을 자동적으로 개선하기 위하여 사용된다. 이방법은 오차변화율및 제어출력의 제한조건에 의하여, 언어제어규칙, 퍼지계수(scaling factor), PID계수, 하이브리드 퍼지논리제어기의 하중계수의 최적값을 자동적으로 추정한다. 시뮬레이션은 시간지연 플랜트및 하수처리시스템의 활성오니공정과 같은 비선형 플랜트에서 실행되고, 시스템의 성능은 평가지수 ITAE로 평가된다.

  • PDF

on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks (적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링)

  • 오성권;박병준;박춘성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF