Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.12
/
pp.5904-5927
/
2019
Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.
Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.
Journal of Institute of Control, Robotics and Systems
/
v.7
no.10
/
pp.819-826
/
2001
Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.
Proceedings of the Computational Structural Engineering Institute Conference
/
2009.04a
/
pp.433-436
/
2009
본 연구에서는 준능동 TMD(STMD)가 설치된 초고층건물의 풍응답을 효과적으로 저감시키기 위한 퍼지 하이브리드제어기법을 제안하였다. 이를 위하여 STMD의 응답저감에 우수한 성능을 보이는 스카이훅(skyhook) 제어기와 구조물의 응답저감에 뛰어난 그라운드훅(groundhook) 제어알고리즘을 사용하였다. 본 연구에서는 두 제어기를 적절히 조합하기 위하여 최적의 가중치를 실시간으로 결정하는 퍼지 하이브리드제어기를 개발함으로써 일반적인 가중합방식의 하이브리드 제어기법의 성능을 개선하였다. 제안된 제어기의 성능을 검토하기 위하여 풍하중을 받는 76층 사무소 건물을 예제구조물로 사용하였다. MR 감쇠기를 이용하여 STMD를 구성하였고 STMD의 제어성능을 평가하기 위하여 TMD 및 ATMD의 성능과 비교하였다. 수치해석을 통하여 STMD의 제어성능이 TMD에 비하여 월등히 뛰어남을 확인할 수 있었다. 또한 퍼지 하이브리드 제어기법을 사용하면 스카이훅 및 그라운드훅 제어기를 효과적으로 조합하여 STMD와 건물의 응답을 동시에 줄일 수 있음을 확인하였다.
본 논문에서는 간접 벡터 제어 방식의 유도전동기를 위한 하이브리드 퍼지 속도제어기를 설계한다. 제안한 하이브리드 퍼지 속도제어기는 유도 전동기의 속도 응답 성능을 향상시키기 위하여 응답 상태에 따라 PI(비계적분) 제어기와 퍼지 제어기를 선택하여 사용하는 형태이다. 정상상태에서는 PI 제어기를 사용하고 속도 오차값이 크면 퍼지 제어기를 사용한다. 또한 사용된 퍼지 제어기는 퍼지 입력의 파라미터를 튜닝하여 응답 성능을 높였다. 본 논문에서 제안한 하이브리드 퍼지속도 제어기와 기존의 PI 제어기의 성능을 실험을 통하여 비교 검증한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.185-188
/
2007
본 논문은 하이브리드용 자동차의 리튬 이온 전지의 사이클 라이프에 따른 용량의 감소를 예측하고 잔량을 예측하기 위한 지능형 스마트 모듈의 설계를 제안한다. 리튬 이온 전지는 충 방전 횟수에 따라 전하를 담을 수 있는 용량이 감소하고, 방전 전압이 비선형이므로 정확한 잔량 예측이 어렵다. 따라서, 지능형 스마트 모듈은 전압과 전류, 온도의 측정을 위한 데이터 수집 장치를 제작하고 퍼지 로직을 이용한 잔량 측정 알고리즘을 통해 정확도가 높은 리튬 이온 전지의 잔량을 예측하고, 충 방전 실험 값과 퍼지 로직을 이용한 결과 값의 비교를 통해 그 효용성을 보인다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.585-590
/
1998
The purpose of this paper is to develop a neurofuzzy modeling & inference system which can determine principle dimensions and hull factors in an initial ship design. Neurofuzzy modeling & inference for a hull form design (NeFHull) applies the given input-output data to the fuzzy theory. NeFHull also deals the fuzzificated values with neural networks. NeFHull redefines normalized input-output data as membership functions and executes the fuzzficated information with backporpagation-neural -networks. A hybrid learning algorithms utilized in the training of neural networks and examining the usefulness of suggested method through mathematical and mechanical examples.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.13
no.1
/
pp.73-82
/
2013
In pattern classification, feature selection is an important factor in the performance of classifiers. In particular, when classifying a large number of features or variables, the accuracy and computational time of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. The proposed method consists of two parts: a wrapper part with an improved genetic algorithm(GA) using a new reproduction method and a filter part using mutual information. We also considered feature selection methods based on mutual information(MI) to improve computational complexity. Experimental results show that this method can achieve better performance in pattern recognition problems than other conventional solutions.
본 논문에서는 병렬형 하이브리드 자동차 (PHEV) 파워트레인 구성요소 정격설계와 내연기관의 최적 운전을 위한 퍼지논리제어에 대하여 기술한다. 내연기관, 전동기, Energy Storage System (ESS)과 같은 파워트레인 구성요소들의 정격은 에너지 개념과 Electrical Peaking Hybrid (ELPH)를 이용하여 설계 하였으며 내연기관의 운전효율을 증가시키기 위해 퍼지논리를 사용하여 파워트레인의 전력흐름을 제어하였다. 제안된 퍼지논리는 설계된 구성요소 정격값을 바탕으로 PHEV PSIM 시뮬레이터를 구성하고 시뮬레이션 하여 그 효용성을 분석하였다.
Proceedings of the Korean Society of Precision Engineering Conference
/
1995.10a
/
pp.852-855
/
1995
In modern plant lndustry, dignosis system is an essential implement because a human operator cannot check the state of system all the time. The recent facility needs a computer system which is able to replace and extense the function of the human expert. Checking the state of the plant system, the computer system uses signals form sensors attached to the plant systems. But, It is difficult to predict the cause of the failure from the sensing signals. Because the relationship among the signals cannot be easily represented by mathematical models. So expert system based on a fuzzy rule and Neural network method is sugguested. Expert system decide whether aa state of the system is ordinary of failure by the evaluation of the signals. If the state of the system is unstable, expert system preprocess the signals. When fault is occurred in the machine, the expert system dignoses the state of the system and find the cause as a primary tool. If the expert system dose not find the adequate cause successfully, neural network system uses the preprocessed signals as an input and propose a cause of the failure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.