• 제목/요약/키워드: Hybrid fuel-cell power generation

검색결과 53건 처리시간 0.024초

태양전지-연료전지 복합 전력시스템에 대한 환경평가에 관한 연구 (Environmental Evaluation for a Photovoltaic-Fuel Cell Hybrid Power System)

  • 노경수
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.83-88
    • /
    • 1998
  • 본 논문은 태양전지 연료전지 복합 전력시스랩에 대한 환경평가를 다목적함수의해 선정 보조시스템의 하나언 이상점 기법올 통하여 다루고자 한다. 그에 대한 평가는 발전소 건설에 필요한 부지량과 건설에서 해체때까지의 이산화탄소 배출량의 관점에서 이루어지며 그 결과는 기존의 화석연료 발전시스템들과 비교되어진다. 연료전지 발전은 이미 변덕스러운 날씨하에서 극심한 태양전지의 출력량 변회를 보상하기 위한 적절한 발전기술엄이 증명 되었다. 가장 적은 부지량을 필요로 하는 연료전지 발전은 태양전지 발전시스템의 과도한 부지 펼요량올 경감시 킬 수 있으며 그 태양전지-연료전지 복합 전력시스템은 건셜에서 해체때까지의 이산화탄소 배출량 면에서도 가장 적은 영향올 미치는 것으로 나타난다.

  • PDF

고온형 연료전지 기반 통합형 발전시스템 - 연구개발 동향 고찰 - (Integrated Power Generation Systems Based on High Temperature Fuel Cells - A Review of Research and Development Status -)

  • 김동섭;박성구
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.299-310
    • /
    • 2009
  • Fuel cells are expected to be promising future power sources in both aspects of thermal efficiency and environmental friendliness. Accordingly, worldwide research and development efforts have been enormously increasing recently in various applications such as power plants, transportation and portable power sources. Among others, high temperature fuel cells, such as solid oxide fuel cells and molten carbonate fuel cells, are suitable for electric power plants. Moreover, their high operating temperature is quite appropriate to construct further advanced integrated systems. This paper reviews recent literatures on research and development of integrated power generation systems based on high temperature fuel cells. Research and development efforts are summarized in the area of fuel cell/ gas turbine hybrid systems, application of carbon capture technology to fuel cell systems, integration of coal gasification with fuel cells, and the use of alternative fuels.

제한요소를 고려한 가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석 (Analysis of Performance Characteristics of Gas Turbine-Pressurized SOFC Hybrid Systems Considering Limiting Design Factors)

  • 양원준;김동섭;김재환
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1013-1020
    • /
    • 2004
  • The hybrid system of gas turbine and fuel cell is expected to produce electricity more efficiently than conventional methods, especially in small power applications such as distributed generation. The solid oxide fuel cell (SOFC) is currently the most promising fuel cell for the hybrid system. To realize the conceptual advantages resulting from the hybridization of gas turbine and fuel cell, optimized construction of the whole system must be the most important. In this study, parametric design analyses for pressurized GT/SOFC systems have been peformed considering probable practical limiting design factors such as turbine inlet temperature, fuel cell operating temperature, temperature rise in the fuel cell and soon. Analyzed systems include various configurations depending on fuel reforming type and fuel supply method.

하이브리드 및 연료전지 연계형 해양구조물용 전력체계 (Hybrid & Fuel Cell Connection Power System for Ocean Structure)

  • 박도영;오진석
    • 한국항해항만학회지
    • /
    • 제35권8호
    • /
    • pp.637-641
    • /
    • 2011
  • 해양구조물 전력시스템은 독립형 전력체계를 구축하기 어렵다. 그러므로 해상용 전력시스템을 효과적으로 운영하기 위하여 연료전지 및 하이브리드 전력체계를 연동한 전력시스템을 구축하는 것이 중요하다. 본 연구에서는 연료전지 기반의 해양구조물용 전력체계 설계에 필요한 수소 발생 메카니즘, 사용 전력량 계산과정 등을 기초로 해상용 연료전지 기반의 전력체계를 설계하고, 설계된 전력 시스템을 LabVIEW 프로그램을 활용하여 시뮬레이션 및 분석하였으며, 이를 기반으로 해양구조물용 전력시스템 설계 방안을 제안하고자 한다.

Power control strategies of a DC-coupled hybrid power system for a building microgrid

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제25권3호
    • /
    • pp.50-64
    • /
    • 2011
  • In this paper, a DC-coupled photovoltaic (PV), fuel cell (FC) and ultracapacitor hybrid power system is studied for building microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. The main weak point of the FC system is slow dynamics, because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. A power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build an autonomous system with pragmatic design, and a dynamic model proposed for a PV/FC/UC bank hybrid power generation system. A simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow. The system performance under the different scenarios has been verified by carrying out simulation studies using a practical load demand profile, hybrid power management and control, and real weather data.

투싼 연료전지 하이브리드 차량 개발 (Development of Tucson Fuel Cell Hybrid Electric Vehicle)

  • 전순일;최서호;권순우;이규일;정성진;윤성곤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.357-360
    • /
    • 2005
  • Hyundai Motor Company developed the second generation of fuel cell hybrid electric vehicle based on Tucson SUV in 2004. This vehicle has cold start capability below -10C and its driving performances including maximum speed and accelerating time are almost similar to conventional Tucson SUV's performances without any sacrifice in terms of cabin space. Especially. the cold start capability was realized by utilizing only internal power sources such as fuel cell power and high voltage lithium ion polymer battery. In this paper, we will briefly introduce specifications of Tucson FCEV and its driving performances based on field test and simulations.

  • PDF

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

가스터빈과 고체산화물 연료전지를 결합한 가압형 하이브리드 시스템의 설계변수 해석 (Parametric Design Analysis of a Pressurized Hybrid System Combining Gas Turbine and Solid Oxide Fuel Cell)

  • 정영현;김동섭;김재환
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1605-1612
    • /
    • 2002
  • Thermodynamic performance analysis has been carried out for a hybrid electric power generation system combining a gas turbine and a solid oxide fuel cell and operating at over-atmospheric pressure. Performance characteristics with respect to main design parameters such as maximum temperature and pressure ratio are examined in detail. Effects of other important design parameters are investigated including fuel cell internal parameters such as fuel utilization factor, steam/carbon ratio and current density, and system parameters such as recuperator efficiency and compressor inlet temperature.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF

연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구 (The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System)

  • 정노건;장진영;창상훈;김재문
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.