• Title/Summary/Keyword: Hybrid fibers

Search Result 237, Processing Time 0.022 seconds

A Study on the Degradation of Isopropyl Alcohol with $TiO_2-Coated$ Plastic Optic Fibers (광촉매 코팅 광섬유의 IPA 분해 특성 연구)

  • Yu Dong-Sik;Joo Hyun-Ku;Ha Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.337-341
    • /
    • 2005
  • The degradation of IPA according to coating conditions was examined by $TiO_2/P-25-coated$ POF. In the photoactivity of $TiO_2-coated$ POF, ethanol solvent was higher activity than other solvents. Inorganic(KR-400), organic(A-9540) and inorganic$\cdot$organic hybrid(GPTMS, TMOS) resins were used as binder. Organic binder(A-9540) showed the highest activity for degradation of IPA, but organic binder was decomposed by $TiO_2$. Inorganic binder had lower binder ability than others, and lower adhesive than organic binders. In TMOS as inorganic · organic hybrid binder, activity of IPA degradation was decreased by addition of TMOS when the ratio of TMOS and P-25 was changed from 0.05 to 1.

  • PDF

Development of a Prediction Model for the Mechanical Properties of Polypropylene Composites Reinforced by Talc and Short Glass Fibers (탈크 및 유리단섬유로 강화된 폴리프로필렌 복합재료의 기계적 물성 예측 모델 개발)

  • Kim, Soon;Son, Dongil;Choi, Donghyuk;Jeong, Inchan;Park, Young-Bin;Kim, Sung Youb
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.245-253
    • /
    • 2013
  • In this paper, we developed a theoretical model which is able to predict the tensile strength and elastic modulus of hybrid composites reinforced by two types of randomly distributed discontinuous reinforcements. For this, we considered two known models; One is a prediction model based on the assumption that the composite is reinforced by two types of well aligned continuous reinforcements. The other is a statistical model for the composite which is reinforced by only one type of randomly distributed discontinuous reinforcements. In order to evaluate the validity of accuracy of our prediction model, we measured the strength and elastic modulus of polypropylene hybrid composite reinforced by talc and short glass fiber. We found that the present model drastically enhances the accuracy of strength prediction compared to an existing model, and predicts the elastic modulus within the same order with experimentally measured values.

Evaluation of Dry Tribological Characteristics of Hybrid Metal Matrix Composites with Temperature Rising (온도 상승에 따른 혼합금속복합재료의 건식 마찰특성 평가)

  • Wang, Yi-Qi;Afsar, Ali-Md.;Song, Jung-Il
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.10-16
    • /
    • 2010
  • $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) were manufactured by squeeze casting method investigated for their tribological properties. The pin specimens had different ratios of fiber to particle content but their total weight fraction was constant at 20 wt. %. Tribological tests were performed with a pin-on-disk friction and wear tester. The investigation of the dry tribological characteristics of hybrid MMCs were carried out at room temperature and elevated temperature of$100^{\circ}C$ and$150^{\circ}C$. The morphologies of worn surfaces were examined by scanning electron microscope (SEM) to observe tribological characteristics and investigate wear behavior. The results revealed that the wear resistance improved with the content of SiCp increased of the planar random (PR) MMCs at room temperature. At the elevated temperature, it revealed that the wear resistance of normal (N) MMCs was superior to that of the PR-MMCs due to PR-fibers were easily pulled out holistically from the worn surface. Meanwhile, the coefficient of friction decreased with the temperature increasing.

State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete (고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구)

  • Kim, Woo-Suk;Kang, Thomas H.K.;Kim, Wha-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.28-39
    • /
    • 2014
  • This paper reviews past literatures relevant to fire-resistance properties of high strength concrete and investigates spalling mechanism of high strength concrete in fire. First, literatures were reviewed on spalling occurrence and fire-resistance methods. Second, a chemical change of concrete components in an elevated temperature was presented. Finally, the mechanism of the spalling occurrence and spalling resistance were examined in terms of hybrid fiber content. The focus of the experimental study as part of this research is to investigate the effects of fire on the variation of thermal properties of high strength concrete, which tends to be used in super tall buildings. This experimental study was devised to investigate the fire-resistance performance of high strength concrete containing hybrid fibers. A total of 48 test specimens were exposed to high temperature ranging from $100^{\circ}C$ to $700^{\circ}C$, including room temperature (${\sim}20^{\circ}C$). Test results provide valuable information regarding fire-resistance properties of strength concrete with 100 MPa or greater.

Stability of Pre-treated Fillers for High Loaded Printing Paper (고충전 인쇄용지 제조를 위한 중질 탄산칼슘 전처리 기술의 안정성에 관한 연구)

  • Seo, Yung Bum;Choi, Jin Sung;Ji, Sung Gil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • More addition of calcium carbonate in printing paper allows savings of the wood fibers and the drying energy. Pre-flocculation of GCC (ground calcium carbonate) using functional polymers was known as the best available technology to make high loaded paper until now, and it allowed less reduction of the paper essential properties such as tensile strength and smoothness at higher GCC content. However, pre-flocculated GCC became unstable in size under the continued agitation in the mill. Therefore, pre-flocculation method was modified in such a way that the in-situ calcium carbonate was formed between the GCC particles of the pre-flocculated GCC, and the resultant became more stable in size, which we named as HCC (hybrid calcium carbonate). HCC turned out to make high tensile strength and smoothness as much as the pre-flocculated GCC and gave much better size stability against stirring. Furthermore, HCC gave high bulk that pre-flocculation could not make.

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

Dual Electrospinning to Manufacture Hybrid Nanofibrous Scaffold using Polyurethane and Poly(Ethylene Oxide) (Polyurethane과 Poly(Ethylene Oxide)를 이용한 hybrid 나노섬유 지지체의 제작)

  • Shin, Ji-Won;Shin, Ho-Jun;Heo, Su-Jin;Kim, Ji-Hee;Hwang, Young-Mi;Kim, Dong-Hwa;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.5
    • /
    • pp.224-228
    • /
    • 2006
  • The object of this study is to investigate the potential of dual-electrospun polymer based structure for vascular tissue engineering, especially for the medium or small sue blood vessels. Polyurethane(PU), which is known to be biocompatible in this area, was electrospun with poly(ethylene oxide) (PEO). Concentration of PU was fixed at 20wt%, while that of PEO was set from 15 to 35wt%. Morphological features were observed by SEM image and measurement of porosity and cellular responses were tested before and after extracting PEO from the hybrid scaffolds by immersing the scaffolds into distilled water. The diameter of PEO fibers were ranged from 200nm to 500nm. The lower concentration of PEO tended to show beads. The porosity of the scaffolds after extracting PEO was highly increased with higher concentration of PEO as expected. Also, higher proliferation rate of smooth muscle cells was observed at higher concentration of PEO than at the lower concentration and without PEO. As conclusions, this dual electrospinning technique combined with PU and PEO is expected to overcome the current barrier of cell penetration by providing more space for cells to proliferation.

Characterization of the PVDF Fibers Fabricated by Hybrid Wet Spinning (하이브리드 습식 공정을 통한 PVDF 섬유의 제조 및 특성에 관한 연구)

  • Jeong, Kun;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s. Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, ${\beta}-type$ crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally ${\beta}-form$ crystal structure can be obtained through the transformation of the ${\alpha}-form$ crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. ${\beta}-form$ crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining ${\alpha}$ form crystal structure into ${\beta}-crystal$ structure through the stretching process.

Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores

  • Eom, Jung-Hye;Kim, Young-Wook;Lee, Seung-Seok;Jeong, Doo-Hoa
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.347-351
    • /
    • 2012
  • Vermiculite-silica composites with a layered structure were fabricated by adding cellulose fibers as a pore former and by a simple uniaxial pressing and subsequent sintering process. Three different combinations of additives were used and their effects on the compressive strength and thermal conductivity of the composites were investigated. Both compressive strengths (42-128 MPa) and thermal conductivities (0.75-1.48 $W/m{\cdot}K$) in the direction perpendicular to the pressing direction (T) were higher than those (19-81 MPa and 0.32-1.04 $W/m{\cdot}K$) in the direction parallel to the pressing direction (S) in all samples. The anisotropy in both properties was attributed to the microstructural anisotropy, which was caused by the layered structure developed in the composites.

Control of Shrinkage Cracking of Cement Composites with Different Length Mixture of PVA Fibers (서로 다른 길이의 PVA 섬유 혼합에 따른 시멘트 복합체의 균열제어 특성)

  • Won, Jong-Pil;Kim, Myung-Kyun;Park, Chan-Gi;Kim, Wan-Young;Park, Kyoung-Hoon;Jang, Chang-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.405-408
    • /
    • 2006
  • The purpose of this study was to determine the optimum length distribution of hybrid PVA(Poly vinyl alcohol) fiber. To produce blended PVA fiber length, first the length distribution of PVA fiber in the cement composites were identified in an experimental study based on simplex lattice design. Among the different length distributions investigated, fiber length was found to have statistically significant effect on plastic shrinkage cracking of cement composites. Subsequently, Complex analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected fiber length distribution based on plastic shrinkage crack. The optimum blended PVA length ratio was 0.0146% 4mm fiber, 0.0060% 6-mm fiber, 0.0285% 8-mm fiber, and 0.0209% 12-mm fiber.

  • PDF