DOI QR코드

DOI QR Code

Development of a Prediction Model for the Mechanical Properties of Polypropylene Composites Reinforced by Talc and Short Glass Fibers

탈크 및 유리단섬유로 강화된 폴리프로필렌 복합재료의 기계적 물성 예측 모델 개발

  • 김순 (울산과학기술대학교 (UNIST) 기계 및 신소재공학부) ;
  • 손동일 (동국실업 주식회사 기술연구소) ;
  • 최동혁 (동국실업 주식회사 기술연구소) ;
  • 정인찬 (동국실업 주식회사 기술연구소) ;
  • 박영빈 (울산과학기술대학교 (UNIST) 기계 및 신소재공학부) ;
  • 김성엽 (울산과학기술대학교 (UNIST) 기계 및 신소재공학부)
  • Received : 2013.05.11
  • Accepted : 2013.08.19
  • Published : 2013.09.01

Abstract

In this paper, we developed a theoretical model which is able to predict the tensile strength and elastic modulus of hybrid composites reinforced by two types of randomly distributed discontinuous reinforcements. For this, we considered two known models; One is a prediction model based on the assumption that the composite is reinforced by two types of well aligned continuous reinforcements. The other is a statistical model for the composite which is reinforced by only one type of randomly distributed discontinuous reinforcements. In order to evaluate the validity of accuracy of our prediction model, we measured the strength and elastic modulus of polypropylene hybrid composite reinforced by talc and short glass fiber. We found that the present model drastically enhances the accuracy of strength prediction compared to an existing model, and predicts the elastic modulus within the same order with experimentally measured values.

본 연구에서는 입자형태인 두 가지 이상의 강화제가 기지 내에 무작위로 분포하여 하이브리드 복합재료를 이룰 때, 강화제의 함유량에 따른 복합재료의 인장강도 및 탄성계수를 예측할 수 있는 이론 모델을 제안하였다. 이를 위하여 연속적인 두 강화제가 기지 내에 평행하게 분포한 복합재료 모델에 입자형태의 한 가지 강화제가 무작위하게 분포한 복합재료 모델을 수정 적용하였다. 본 연구에서 제안한 모델의 정확성과 타당성을 논의하기 위해, 산업체에서 널리 쓰이고 있는 폴리프로필렌을 기지로 하고, 탈크와 유리단섬유를 서로 다른 강화제로 한 복합재료를 제작하여 인장강도 및 탄성계수를 측정하였다. 인장강도 값을 예측하는 경우, 이전의 이론 모델이 실험 측정값과 7배 이상의 오차를 보이는 반면 본 연구의 모델은 비슷한 값을 예측하였다. 탄성계수의 경우에도 본 연구의 모델은 비교적 정확하게 실험 측정 값을 예측할 수 있었다.

Keywords

References

  1. Zhou, Y., and Mallick, P.K., "Effects of Temperature and Strain Rate on the Tensile Behavior of Unfilled and Talc-filled Polypropylene, Part1," Polymer Engineering and Science, Vol. 42, No. 12, 2002, pp. 2449-2460. https://doi.org/10.1002/pen.11131
  2. Zhou, Y., and Mallick, P.K., "Effects of Temperature and Strain Rate on the Tensile Behavior of Unfilled and Talc-filled Polypropylene, Part2," Polymer Engineering and Science, Vol. 42, No. 12, 2002, pp. 2461-2470. https://doi.org/10.1002/pen.11132
  3. Thomason, J.L., and Vlug, M.A., "Influence of Fibre Length and Concentration on the Properties of Glass Fibre-reinforced Polypropylene, 1. Tensile and Flexural Modulus," Composites: Part A, Vol. 27A, 1996, pp. 477-484.
  4. Thomason, J.L., Vlug, M.A., Schipper, G., and Krikor, H.G.L.T., "Influence of Fibre Length and Concentration on the Properties of Glass Fibre-reinforced Polypropylene, Part3: Strength and Strain at Failure," Composites: Part A, Vol. 27A, 1996, pp. 1075-1084.
  5. Fu, S., Lauke, B., Mader, E., Yue, C., Hu, X., and Mai, Y., "Hybrid Effects on Tensile Properties of Hybrid Short-glassfiber-and Short-carbon-fiber-reinforced Polypropylene Composites," Journal of Material Science, Vol. 36, 2001, pp. 1243-1251. https://doi.org/10.1023/A:1004802530253
  6. Zweben, C., "Tensile Strength of Hybrid Composites," Journal of Material Science, Vol. 12, 1977, pp. 1325-1337. https://doi.org/10.1007/BF00540846
  7. Fukuda, H., "An Advanced Theory of the Strength of Hybrid Composites," Journal of Material Science, Vol. 19, 1983, pp. 974-982.
  8. Kim, S.Y., Kim, H.M., Lee, D.J., Youn, J.R., and Lee, S.H., "Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate," Journal of Korea Society for Composite Materials, Vol. 25, No. 4, 2012, pp. 117-125. https://doi.org/10.7234/kscm.2012.25.4.117
  9. Maiti, S.N., and Sharma, K.K., "Studies on Polypropylene Composites Filled with Talc Particles, Part 1: Mechanical Properties," Journal of Material Science, Vol. 27, 1992, pp. 4605-4613. https://doi.org/10.1007/BF01165994
  10. Chen, P.E., "Strength Properties of Discontinuous Fiber Composites," Polymer Engineering and Science, Vol. 11, No. 1, 1971, pp. 51-56. https://doi.org/10.1002/pen.760110109
  11. Lees, J.K., "A Study of the Tensile Modulus of Short Fiber Reinforced Plastics," Polymer Engineering and Science, Vol. 8, No. 3, 1968, pp. 186-194. https://doi.org/10.1002/pen.760080303
  12. Blumentritt, B.F., Vu, B.T., and Cooper, S.L., "Mechanical Properties of Discontinuous Fiber Reinforced Thermoplastics, Part2: Random-in-plane Fiber Orientation," Polymer Engineering and Science, Vol. 15, No. 6, 1975, pp. 428-436. https://doi.org/10.1002/pen.760150606
  13. Jahani, Y., and Ehsani, M., "The Rheological Modification of Talc-filled Polypropylene by Epoxy-polyester Hybrid Resin and its Effect on Morphology, Crystallinity, and Mechanical Properties," Polymer Engineering and Science, Vol. 49, 2009, pp. 619-629. https://doi.org/10.1002/pen.21294
  14. Jackson, P.W., and Cratchley, D., "The Effect of Fibre Orientation on the Tensile Strength of Fibre Reinforced Metals," Journal of the Mechanics and Physics of Solids, Vol. 14, 1966, pp. 49-64. https://doi.org/10.1016/0022-5096(66)90019-6