• Title/Summary/Keyword: Hybrid energy system

Search Result 1,008, Processing Time 0.025 seconds

Energy Band Structure and Photocatalytic Property of Fe-doped Zn2TiO4 Material

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Lim, Kwon-Taek;Jung, Ok-Sang;Jeong, Euh-Duck;Bae, Jong-Seong;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3021-3024
    • /
    • 2009
  • $Zn_2Ti_{1-x}Fe_xO_4\;(0\;{\leq}\;x\;{\leq}\;0.7)$ photocatalysts were synthesized by polymerized complex (PC) method and investigated for its physico-chemical as well as optical properties. $Zn_2Ti_{1-x}Fe_xO_4$ can absorb not only UV light but also visible light region due to doping of Fe in the Ti site of $Zn_2TiO_4$ lattice because of the band transition from Fe 3d to the Fe 3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $Zn_2TiO_4$ samples for hydrogen production under UV light irradiation decreased with an increase in Fe concentration in $Zn_2TiO_4$. Consequently, there exists an optimized concentration of iron for improved photocatalytic activity under visible light (${\lambda}{\leq}$420 nm)

Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings (ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구)

  • Wan, Zhixin;Lee, Woo-Jae;Jang, Kyung Su;Choi, Hyun-Jin;Kwon, Se Hun
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.339-344
    • /
    • 2017
  • Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.

Implementation of Road Risk Information Notice Device (도로위험정보알림 디바이스 구현)

  • Kim, Jong-Duk;Han, Seung-Heon;Kim, Yong-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • With the increasing supply of vehicles, construction of new roads and expansion of existing roads are growing and this is leading to a proportional rise in diverse hazards on a road. These hazards are classified into fixed hazards and variable hazards. Currently, drivers receive information of fixed hazards, such as overspeed, frequent accidents, and rock fall through navigations. However, variable hazards are more hazardous than fixed hazards. Map companies frequently enter information of variable hazards manually, but it is less real-time and hard to deal with unforseen hazards. This paper is intended to implement a road hazard warning system for making a contribution to pubic interests by improving this problem and delivering real-time information of hazards to drivers, and suggest a direction for using information of hazards on a road.

Water-stable solvent dependent multicolored perovskites based on lead bromide

  • Sharipov, Mirkomil;Hwang, Soojin;Kim, Won June;Huy, Bui The;Tawfik, Salah M.;Lee, Yong-Ill
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.187-197
    • /
    • 2022
  • The synthesis of organic and hybrid organic-inorganic perovskites directly from solution improves the cost- and energy-efficiency of processing. To date, numerous research efforts have been devoted to investigating the influence of the various solvent parameters for the synthesis of lead halide perovskites, focused on the effects of different single solvents on the efficiency of the resulting perovskites. In this work, we investigated the effect of solvent blends for the first time on the structure and phase of perovskites produced via the Lewis base vapor diffusion method to develop a new synthetic approach for water-stable CsPbBr3 particles with nanometer-sized dimensions. Solvent blends prepared with DMF and water-miscible solvents with different Gutmann's donor numbers (DN) affect the Pb ions differently, resulting in a variety of lead bromide species with various colors. The use of a DMF/isopropanol solvent mixture was found to induce the formation of the Ruddlesden-Popper perovskite based on lead bromide. This perovskite undergoes a blue color shift in the solvated state owing to the separation of nanoplatelets. In contrast, the replacement of isopropanol with DMSO, which has a high DN, induces the formation of spherical CsPbBr3 perovskite nanoparticles that exhibit green emission. Finally, the integration of acetone in the solvent system leads to the formation of lead bromide complexes with a yellow-orange color and the perovskite CsPbBr3.

A Systems Engineering Approach for Predicting NPP Response under Steam Generator Tube Rupture Conditions using Machine Learning

  • Tran Canh Hai, Nguyen;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.94-107
    • /
    • 2022
  • Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.

An Analysis of Idling Stop Time Using Real On-road Driving Data (실도로 주행 데이터를 이용한 공회전 정지 시간의 분석)

  • Hong, Seong-Tae;Lee, Beom-Ho;Lee, Dae-Yeop;Sim, Mu-Gyeong;Im, Jae-Myeong
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2010
  • In this study, the real on-road driving data were analyzed to draw the various characteristics related to idling of vehicles. The results revealed that the average idling time of a city bus corresponds to 30.9% of the total daily driving time. Among this, for about 21.6% of the total daily driving time, it is available that an engine can be halted while the vehicle stops. It is a daytime when the portion of time, for which idling stop is available, is peak. Due to idling stop, an increase of turnaround was not found throughout this analysis. When a city bus stops at a traffic right, idling periods were long enough to execute the idling stop, during which an engine halts. Whereas, during the idling time for bus stops, the idling periods were not so long enough to execute idling stop. Deceleration periods among the total turnarounds of a city bus occupies about 24.7%, during which, for about 30%, a deceleration maintains for more than four seconds. Thus, using the energy during deceleration period, which then can be recovered from braking energy, it was also found that a hybrid system can be effectively implemented to a city bus.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Literature Review of Model Testing Techniques for Performance Evaluation of Floating Offshore Wind Turbine in Ocean Basin (부유식 해상풍력 시스템 성능평가를 위한 수조모형시험 기법고찰)

  • Yoon-Jin Ha;Hyeonjeong Ahn;Sewan Park;Ji-Yong Park;Dong Woo Jung;Jae-Sang Jung;Young Uk Won;Ikseung Han;Kyong-Hwan Kim;Jonghun Lee
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.26-41
    • /
    • 2022
  • Three similarities (i.e., geometrical similarity, kinematic similarity and dynamic similarity) between a prototype and model must be satisfied to perform an experiment for a floating offshore wind turbine (FOWT). For dynamic similarity, most of the model tests in ocean engineering basins are performed based on the Froude number, so the scale effect for the wind turbine of an FOWT occurs by different Reynolds numbers between the prototype and model. In this study, various model test techniques for overcoming the scale effect of the wind turbine part of the FOWT are investigated. Firstly, model test techniques using simple approaches are reviewed, and the advantages and disadvantages of the simple approaches are summarized. Secondly, the model test techniques in recent projects that apply improved approaches are introduced including advantages and disadvantages. Finally, new approaches applying digitalization are reviewed, and the characteristics of the new approaches are introduced.

Optimization of Hybrid Process of(Chemical Coagulation, Fenton Oxidation and Ceramic Membrane Filtration) for the Treatment of Reactive Dye Solutions (반응성 염료폐수 처리를 위한 화학응집, 펜톤산화, 세라믹 분리막 복합공정의 최적화)

  • Yang, Jeong-Mok;Park, Chul-Hwan;Lee, Byung-Hwan;Kim, Tak-Hyun;Lee, Jin-Won;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2006
  • This study investigated the effects of hybrid process(chemical coagulation, Fenton oxidation and ceramic UF(ultrafiltration)) on COD and color removals of commercial reactive dyestuffs. In the case of chemical coagulation, the optimal concentrations of $Fe^{3+}$ coagulant for COD and color removals of RB49(reactive blue 49) and RY84(reactive yellow 84) were determined according to the different coagulant dose at the optimal pH. They were 2.78 mM(pH 7) in RB49 and 1.85 mM(pH 6) in RY84, respectively. In the case of Fenton oxidation, the optimal concentrations of $Fe^{3+}\;and\;H_2O_2$ were obtained. Optimal $[Fe^{2+}]:[H_2O_2]$ molar ratio of COD and color removals of RB49 and RY84 were 4.41:5.73 mM and 1.15:0.81 mM, respectively. In the case of ceramic UF, the flux and rejection of supernatant after Fenton oxidation were investigated. After ceramic UF for 9 hr, the average flux of RB49 and RY84 solutions were $53.4L/m^2hr\;and\;67.4L/m^2hr$ at 1 bar, respectively. In addition, the permeate flux increased and the average flux recovery were 98.5-99.9%(RB49) and 91.0-97.3%(RY84) according to adopting off-line cleaning(5% $H_2SO_4$). Finally, COD and color removals were 91.6-95.7% and 99.8% by hybrid process, respectively.

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.