• 제목/요약/키워드: Hybrid energy device

검색결과 153건 처리시간 0.027초

복합 슬릿-마찰 감쇠장치가 적용된 철근 콘크리트 특수 모멘트 저항골조의 내진성능 평가 (Seismic Performance Evaluation of Special Reinforced Concrete Moment Resisting Frames With Hybrid Slit-Friction Damper)

  • 이준호;김기철;김진구
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.35-42
    • /
    • 2017
  • This study develops a new hybrid passive energy dissipation device for seismic rehabilitation of an existing structure. The device is composed of a friction damper combined with a steel plate with vertical slits as a hysteretic damper. Analytical model is developed for the device, and the capacity of the hybrid device to satisfy a given target performance is determined based on the ASCE/SEI 7-10 process. The effect of the device is verified by nonlinear dynamic analyses using seven earthquake records. The analysis results show that the dissipated inelastic energy is concentrated on the hybrid damper and the maximum interstory drift of the SMRF with damping system satisfies the requirement of the current code.

Hybrid Transparent Conductor by using Solution-Processed AgNWs for High-Performing Si Photodetectors

  • Kim, Hong-Sik;Kim, Joondong
    • Current Photovoltaic Research
    • /
    • 제3권4호
    • /
    • pp.116-120
    • /
    • 2015
  • A hybrid transparent conducting layer was applied for Si photodetector. To realize the hybrid transparent conducting layer, a 200 nm-thick ITO layer was deposited onto a Si substrate, following by a solution-processed AgNWs-coating on the ITO. The hybrid transparent conducting layer showed an excellent low electric resistance of $15.9{\Box}/{\Omega}$ with a high optical transparency of 86.89%. Due to these optical and electrical benefits, the hybrid transparent conductor-embedding Si diode provides an extremely high rectifying ratio of 3386. Under light-illumination, the hybrid transparent conductor device provides extremely high photoresponses for broad wavelengths. This implies that a functional design for hybrid transparent conductor is crucial for photoelectric devices and applications.

Seismic response of steel braced frames equipped with shape memory alloy-based hybrid devices

  • Salari, Neda;Asgarian, Behrouz
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.1031-1049
    • /
    • 2015
  • This paper highlights the role of innovative vibration control system based on two promising properties in a parallel configuration. Hybrid device consists of two main components; recentering wires of shape memory alloy (SMA) and steel pipe section as an energy dissipater element. This approach concentrates damage in the steel pipe and prevents the main structural members from yielding. By regulation of the main adjustable design parameter, an optimum performance of the device is obtained. The effectiveness of the device in passive control of structures is evaluated through nonlinear time history analyses of a five-story steel frame with and without the hybrid device. Comparing the results proves that the hybrid device has a considerable potential to mitigate the residual drift ratio, peak absolute acceleration and peak interstory drift of the structure.

배터리-울트라커패시터 하이브리드 에너지 저장장치를 위한 고효율 전력변환 시스템 (High Efficiency Power Conversion System for Battery-Ultracapacitor Hybrid Energy Storages)

  • 유주승;최우영
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.523-531
    • /
    • 2012
  • This paper proposes a high efficiency power conversion system for battery-ultracapacitor hybrid energy storages. The proposed system has only one bidirectional dc-dc converter for hybrid power source with batteries and ultracapacitors. The hybrid power source has bidirectional switching circuits for selecting one energy storage device. Bidirectional power flow between the energy storage device and high voltage capacitor can be controlled by one bidirectional converter. An asymmetrical switching method is applied to the bidirectional converter for high power efficiency. Switching power losses are reduced by zero-voltage switching of power switches. System operation and design considerations are presented. The experimental results are provided to verify the performance of the proposed system.

지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구 (Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device)

  • 김휘동;백남춘;이진국;신우철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

압전 폴리머를 접목한 초전-자기-압전 발전소자의 출력 특성 향상 연구 (Enhancement of Power Generation in Hybrid Thermo-Magneto-Piezoelectric-Pyroelectric Energy Generator with Piezoelectric Polymer)

  • 백창민;이건;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.620-626
    • /
    • 2023
  • Energy harvesting technology, which converts wasted energy sources in everyday life into usable electric energy, is gaining attention as a solution to the challenges of charging and managing batteries for the driving of IoT sensors, which are one of the key technologies in the era of the fourth industrial revolution. Hybrid energy harvesting technology involves integrating two or more energy harvesting technologies to generate electric energy from multiple energy conversion mechanisms. In this study, a hybrid energy harvesting device called TMPPEG (thermo-magneto-piezoelectric-pyroelectric energy generator), which utilizes low-grade waste heat, was developed by incorporating PVDF polymer piezoelectric components and optimizing the system. The variations in piezoelectric output and thermoelectric output were examined based on the spacing of the clamps, and it was found that the device exhibited the highest energy output when the clamp spacing was 2 mm. The voltage and energy output characteristics of the TMPPEG were evaluated, demonstrating its potential as an efficient hybrid energy harvesting component that effectively harnesses low-grade waste heat.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Development of Copper Electro-Plating Technology on a Screen-Printed Conductive Pattern with Copper Paste

  • Eom, Yong-Sung;Son, Ji-Hye;Lee, Hak-Sun;Choi, Kwang-Seong;Bae, Hyun-Cheol;Choi, Jeong-Yeol;Oh, Tae-Sung;Moon, Jong-Tae
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.51-54
    • /
    • 2015
  • An electro-plating technology on a cured isotropic conductive pattern with a hybrid Cu paste composed of resin matrix, copper, and solder powders has been developed. In a conventional technology, Ag paste was used to perform a conductive pattern on a PCB or silicon substrate. From previous research, the electrical conductive mechanism and principle of the hybrid Cu paste were concisely investigated. The isotropic conductive pattern on the PCB substrate was performed using screen-printing technology. The optimum electro-plating condition was experimentally determined by processing parameters such as the metal content of the hybrid Cu paste, applied current density, and time for the electroplating in the plating bath. The surfaces and cross-sections were observed using optical and SEM photographs. In conclusion, the optimized processing conditions for Cu electro-plating technology on the conductive pattern were a current density of $40mA/cm^2$ and a plating time of 20min on the hybrid Cu paste with a metal content of 44 vol.%. More details of the mechanical properties and processing conditions will be investigated in further research.

EDLC를 이용한 X선 투시촬영장치용 하이브리드 X선 제너레이터 (Hybrid Type X-Ray Generator Using EDLC for Fluoroscopy X-Ray System)

  • 서영민;홍순찬
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.89-98
    • /
    • 2014
  • A diagnostic fluoroscopy X-ray system uses a 32kW or greater X-ray generator for obtaining real-time moving images and high-resolution images. Fluoroscopy X-ray systems have to use a high-capacity AC power source to perform long-time low-power fluoroscopy and short-time high-power spot exposure. In this paper, we propose a hybrid type X-ray generator for fluoroscopy X-ray system which can perform fluoroscopy and spot exposure with a low-capacity AC power source and an energy storage device. The characteristics of energy storage devices are compared and each energy storage device is modelled to equivalent circuit. And the characteristics of available energy are analyzed as a function of output voltage and power. A 32kW class hybrid X-ray generator with EDLC as an energy storage device for fluoroscopy X-ray system was constructed, and its validity was verified by means of simulations and experiments.

Flexible device 상용화를 위한 flexible supercapacitor 연구

  • 강승원;배준호;이철승
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.422.2-422.2
    • /
    • 2016
  • 스마트폰, 태블릿 등의 디바이스의 발전에 따라 휴대성이 매우 중요해졌다. 디바이스의 크기, 두께, 유연성에 관한 연구가 활발히 진행되고 있으며, 그 중에서도 energy storage device의 flexibility를 향상시키는 연구가 주목 받고 있다. Energy storage device의 성능 향상을 위해서는 power density를 높여야 하며 flexibility를 위해서는 전극판과 전극소재 간의 부착력을 증가시켜야 한다. 본 연구에서는, power density와 소재 간의 부착성을 개선시키기 위해 기존 graphene보다 표면적이 넓으며 power density가 좋고 전극판과의 부착성이 좋은 hybrid GNP-CNT를 사용하였다. 그리고 Ag NWs/CNT PET film 을 사용하여 전도성이 있는 flexible한 전극판을 사용하였다. SEM 측정을 통해 표면 분석을 하였고, sample에 패턴을 하고 Bending test를 하여 부착성을 확인하였다. 또한, CV curve를 측정하여 supercapacitor의 특성을 확인하였다. 향후, $MnO_2$ NWs를 hybrid GNP-CNT에 합성시킴으로 energy storage device의 energy density를 더욱 향상시키는 연구를 진행할 것이다.

  • PDF