• Title/Summary/Keyword: Hybrid device

Search Result 612, Processing Time 0.034 seconds

Comparative Evaluation of the Cooling and Heating Performance of a $CO_2$ Heat Pump System for Vehicles (차량용 이산화탄소 열펌프 시스템의 냉난방 성능 비교평가)

  • Kim, Sung-Chul;Kim, Min-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.126-131
    • /
    • 2009
  • A $CO_2$ heat pump system was designed for both cooling and heating in the cabin of electric vehicles, hybrid vehicles or fuel cell vehicles, In this study, the performance characteristics of the heat pump system without any supplementary heating device were analyzed and the heating performance was compared with the cooling performance for various operating conditions. Experiments were carried out by changing the speed of electric drive compressor, the air flow rate of interior heat exchanger and the air inlet temperature and speed of exterior heat exchanger. Therefore, the cooling/heating capacities and the corresponding COPs are quantified. Also, the heat pump system showed an improved performance for the cooling operation and the heating operation. In this study, the experimental results can be used to evaluate the effect of system design changes on system performance as well as the development of a highly efficient heat pump system.

Recent advances in transcatheter treatment of congenital heart disease (선천성 심질환에 대한 중재적 치료술의 최근 진전)

  • Choi, Jae Young
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.9
    • /
    • pp.917-929
    • /
    • 2006
  • Over the last several decades there has been a remarkable change in the therapeutic strategy of congenital heart disease. Development of new tools and devices, accumulations of experience, technical refinement have positively affected the outcome of interventional treatment. Many procedures including atrial septostomy, balloon valvuloplasty, balloon dilation of stenotic vessel with or without stent implantation, transcatheter occlusion of abnormal vascular structure, transcatheter closure of patent arterial duct and atrial septal defect, are now performed as routine interventional procedures in many institutes. In diverse conditions, transcatheter techniques also provide complementary and additive role in combination with surgery. Intraoperative stent implantation on stenotic vessels, perventricular device insertion, and hybrid stage 1 palliative procedure for hypoplastic left heart syndrome have been employed in high risk patients for cardiac surgery with encouraging results. Transcatheter closure of ventricular septal defect has been performed safely showing comparable result with surgery. Investigational procedures such as percutaneous valve insertion and valve repair are expected to replace the role of surgery in certain group of patients in the near future. Continuous evolvement in this field will contribute to reduce the risk and suffering from congenital heart disease, while surgery will be still remained as a gold standard for significant portion of congenital heart disease.

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo;Nam, Dae-Hyun;Lee, Young-Joo;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

The Study on the Energy self-sufficiency and Economic Analysis of KIER Zero Energy Solar House (제로에너지 솔라하우스(KIER ZeSH)의 에너지 자립도 및 경제성 분석)

  • Jeong, Seonyeong;Baek, Namchoon;Yoo, Changkyoon;Yoon, Eungsang;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • In this study, the energy and economic analysis of KIER Zero Energy Solar House (KIER ZeSH) was carried out. KIER ZeSH was designed and constructed in the end of 2009 for the purpose of more than 70% energy self-sufficiency in total load as well as less than 20% of additional construction cost. The several building energy conservation technologies like as super insulation, high performance window, wast heat recovery system, etc and renewable energy system. The renewable heating and cooling system is a kind of solar thermal system combined with geo-source heat pump as a back-up device. The capacity of 3.15kW solar BIPV system was also installed on the roof. The measurement by monitering system of ZeSH was conducted for one year from November 2009 to October 2010. The energy self-sufficiency and economic analysis were conducted based on the this monitering result. As a result, the energy self sufficiency is about 83% which is higher than that of the target and the payback period is 11 years.

  • PDF

Synthesis and Characterization of Novel Conjugated Polymer with Thiophene and Benzimidazole

  • Song, Su-Hee;Park, Sung-Heum;Jin, Young-Eup;Kim, Il;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3045-3050
    • /
    • 2011
  • The synthesis of copolymers containing thiophene and benzimidazole unit by Stille polymerization is reported. The polymers with many unsubstituted thiophene units in the backbone have been reported to show low solubility, which has been a problem for spin-coating for the device fabrication. In dihexyl-2H-benzimidazole, the sulfur at 2-position of BT unit was replaced with dialkyl substituted carbon, while keeping the 1,2-quinoid form, to improve the solubility of the polymers. The PL emission spectra of the PHBIT1, PHBIT2 and PHBIT3 in chloroform solutions show maximum peaks at 500~561 nm. In thin films, maximum peaks of the PHBITs appeared at 529, 562 and 569 nm, respectively. The EL emission maxima of the PHBIT1 and PHBIT2 appear at around 588 and 576 nm, respectively. The current density and maximum luminescence of the LED with the configuration of ITO/PEDOT/ PHBIT2/Ca/Al are 552 mA/$cm^2$ and 46 cd/$m^2$, respectively.

Crystallographic study of in-plane aligned hybrid perovskite thin film

  • Lee, Rin;Kim, Se-Jun;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.163.1-163.1
    • /
    • 2016
  • Lead halide perovskites CH3NH3PbX3 (X=Cl, Br, I) have received great interest in the past few years because of their excellent photoelectronic properties as well as their low-cost solution process. Their theoretical efficiency limit of the solar cell devices was predicted around 31% by a detailed balance model for the reason that exceptional light-harvesting and superior carrier transport properties. Additionally, these excellent properties contribute to the applications of optoelectronic devices such as LASERs, LEDs, and photodetectors. Since these devices are mainly using perovskite thin film, one of the most important factor to decide the efficiency of these applications is the quality of the film. Even though, optoelectrical devices are composed of polycrystalline thin film in general, not a single crystalline form which has longer carrier diffusion length and lower trap density. For these reasons, monodomain perovskite thin films have potential to elicit an optimized device efficiency. In this study, we analyzed the crystallography of the in-plane aligned perovskite thin film by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Also the basic optic properties of perovskites were checked using scanning electron microscopy (SEM) and UV-Vis spectrum. From this work, the perovskite which is aligned in all directions both of out-of-plane and in-plane was fabricated and analyzed.

  • PDF

Needle Type of Hybrid Temperature Probe for Both Diagnosis and Treatment of Musculoskeletal Pain Syndrome (근골격계 통증질환의 진단과 치료를 위한 주사바늘형 복합온도 프로브의 개발)

  • Nam, Sung-Ki;Kim, Hyung-Il;Byun, Chang-Ho;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.359-364
    • /
    • 2014
  • This paper describes the development of needle type probe that measures temperature and injects medicine for both diagnosis and treatment of musculoskeletal pain syndrome (MPS). The size of trigger points is from several micrometers to millimeter. Therefore, it is required to develop a medical device that is capable of not only finding the trigger points by temperature measurement, but also injecting medicine at the exact location for treatment. To challenge these difficulties, thermocouple was fabricated on the surface of a needle using metal deposition process. Special type of stainless-constantan thermocouple was achieved from the stainless body of a needle itself and deposited constantan metal film. In particular, parylene coating enables to limit the temperature sensitive area to the end of the needle tip. Fabricated needle type probe produces $3.25mV/^{\circ}C$ of thermoelectric sensitivity and compared its performance with commercial T-type thermocouple in animal muscle sample.

Wind/PV Hybrid system with Smart Display Device (스마트표시기능을 갖는 풍력/태양광 복합발전시스템)

  • Jeong, Byeong-Ho;Yeon, Sang-Jin;Jung, Byeong-Soo;Choi, Young-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1354-1355
    • /
    • 2011
  • 화석에너지의 유한성과 공해문제로 인해 대체에너지 개발에 대한 관심이 고조되는 가운데 태양광발전과 풍력발전이 그 중에서 가장 활발하게 연구되고 실제 이용비율도 상당히 높은 편이다. 이는 외기 기후변화에 대한 상대적인 보완성을 가진 두 가지 형태의 에너지원으로부터의 에너지변환과정으로 인해 그 이용이 더욱 부각되고 있다. 기존의 풍력발전시스템, 태양광발전시스템 또는 풍력/태양광 복합발전시스템 중 대형발전시스템의 경우는 일사량센서나 풍속센서를 부착하여 최대 출력점 제어나 외기환경 인식을 위해서 일사량이나 풍속과 같은 외기환경정보를 획득하여 사용하며 이를 교육용 또는 외기환경정보를 분석하는데 이용하기도 하고, 다양한 표시장치를 통해 표시하기도 한다. 그러나, 일사량센서나 풍속센서는 고가의 센서로 대형 태양광발전시스템이나 풍력발전시스템에서는 여러 개소의 설치를 통해 보다 정확한 정보를 획득해야 하며, 이를 위해 많은 개수의 센서가 필요하다. 현실적으로 여러 개의 센서는 고가의 설치 비용으로 인해 샘플링을 위해서만 설치될 뿐 발전시스템의 설치사이트의 다양한 분석이 어려운 점이 있었다. 본 논문에서는 풍속센서나 일사량센서 없이 태양전지모듈로부터 직접 일사량을 검출하는 방식의 일사량 정보획득과 풍력발전시스템에서의 풍속정보를 획득하는 방법을 제안한다.

  • PDF

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

The Variation of Response on Humidity in CNT Thin Film by Silane Binders (실란 바인더에 의한 탄소나노튜브 박막의 감습 특성 변화)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.782-787
    • /
    • 2010
  • Recently the solution-based thin film technology has often been treated in the field of device fabrication owing to easy process and convenience for the development of various semiconductor devices and sensors. We deposited on glass substrate single-walled carbon nanotubes (SWNTs)/silane hybrid thin films by multiple spray-coating which is one of solution-based processes, and examined their electrical response for humidity. Generally silane binders which are often mixed in carbon nanotube (CNT) solution to adhere CNTs to substrate well form easily each own functionalized group on the surface of CNTs after they are hardened by way of the hydrolysis reaction. In this work, we investigated how silane binders (TEOS (tetraethoxy silane), MTMS (methyltrimethoxysilane) and VTMS (vinyltrimethoxysilane)) in CNT thin films make effect to their electrical response on humidity. As the result, we found that the resistance in the samples using TEOS was changed dramatically while it was almost invariant in the samples using MTMS and VTMS for increasing humidity.