• 제목/요약/키워드: Hybrid device

검색결과 612건 처리시간 0.024초

Hybrid Solar Cells with Polymer/Fullerene Bulk Heterojunction Layers Containing in-situ Synthesized CdS Nanocrystals

  • Kwak, Eunjoo;Woo, Sungho;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.152-156
    • /
    • 2014
  • We report hybrid solar cells fabricated with polymer/fullerene bulk heterojunction layers that contain inorganic nanocrystals synthesized by in-situ reaction in the presence of polymer chains. The inorganic (cadmium sulfide) nanocrystal ($CdS_{NC}$) was generated by the reaction of cadmium acetate and sulfur by varying the reaction time up to 30 min. The synthesized $CdS_{NC}$ showed a rectangular flake shape, while the size of $CdS_{NC}$ reached ca. 150 nm when the reaction time was 10 min. The performance of hybrid solar cells with $CdS_{NC}$ synthesized for 10 min was better than that of a control device, whereas poor performances were measured for other hybrid solar cells with $CdS_{NC}$ synthesized for more than 10 min.

다중 프로토콜 기반의 효율적인 하이브리드 조명관리 시스템 구현 (An Efficient Hybrid Lighting Management System Implementation on Multi Protocol)

  • 홍성일;인치호
    • 전기전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.550-558
    • /
    • 2013
  • 본 논문에서는 다중 프로토콜 기반의 효율적인 하이브리드 조명관리 시스템 구현을 제안한다. 제안된 하이브리드 조명관리 시스템은 조명기기의 관리 및 제어를 위한 데이터 표시부와 데이터 변환 및 처리부, 게이트웨이의 통신부로 구성하여 설계하였다. 데이터는 실시간으로 저장이 가능하도록 DB를 설계하였고, 실시간 무선 원격제어 및 스케줄을 설정하여 관리하도록 구현하였다. 본 논문에서 제안된 효율적인 하이브리드 조명관리 시스템의 효율성 검증결과, 스마트 기기 및 포터블 PC 등과 연동하여 실시간 모니터링 및 원격 조명제어가 가능하였고, 결과적으로 에너지 절감 및 전기료 감소, 통신비용 감소 효과를 얻을 수 있었다.

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • 제64권2호
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

5축 혼합형 공작기계의 정밀도 향상 연구 (Accuracy Improvement of a 5-axis Hybrid Machine Tool)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제17권3호
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, a novel 5-axis hybrid-kinematic machine tool is introduced and the research results on accuracy improvement of the prototype machine tool are presented. The 5-axis hybrid machine tool is made up of a 3-DOF parallel manipulator and a 2-DOF serial one connected in series. The machine tool maintains high ratio of stiffness to mass due to the parallel structure and high orientation capability due to the serial-type wrist. In order to acquire high accuracy, the methodology of measuring the output shafts by additional sensors instead of using encoder outputs at the motor shafts is proposed. In the kinematic view point, the hybrid manipulator reduces to a serial one, if the passive joints in the U-P serial chain at the center of the parallel manipulator are directly measured by additional sensors. Using the method of successive screw displacements, the kinematic error model is derived. Since a ball-bar is less expensive than a full position measurement device and sufficiently accurate for calibration, the kinematic calibration method of using a ball-bar is presented. The effectiveness of the calibration method has been verified through the simulations. Finally, the calibration experiment shows that the position accuracy of the prototype machine tool has been improved from 153 to $86{\mu}m$.

하이브리드 트랙터의 해석모델 개발 및 연료 소비량 분석 (Analysis of the Fuel Consumption and the Development of the Analysis Model of the Hybrid Tractor)

  • 김동명;김수철;이상헌;김용주;장주섭
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.326-335
    • /
    • 2015
  • In this paper, is a study that analyzed the fuel consumption of hybrid tractor. Testing and analysis in order to evaluate the fuel consumption was performed. Analysis model was developed by using the SimulationX that is a commercial software. Also, map of the analysis model was modeled on the basis of test data. Test was performed using a dynamo device. The engine was tested the fuel consumption in accordance with the conditions on the load and throttle opening. The battery was tested the discharge and charge in accordance with the current amount. We verified the reliability of the analysis model by comparing the analysis results with the rest results. After considering the reliability of each analysis model was extended to the entire hybrid tractor system. To evaluate the efficiency using the analysis model, compared the fuel consumption of general tractor with hybrid tractor in the same load conditions.

Use of 1.7 kV and 3.3 kV SiC Diodes in Si-IGBT/ SiC Hybrid Technology

  • Sharma, Y.K.;Coulbeck, L.;Mumby-Croft, P.;Wang, Y.;Deviny, I.
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1356-1361
    • /
    • 2018
  • Replacing conventional Si diodes with SiC diodes in Si insulated gate bipolar transistor (IGBT) modules is advantageous as it can reduce power losses significantly. Also, the fast switching nature of the SiC diode will allow Si IGBTs to operate at their full high-switching-speed potential, which at present conventional Si diodes cannot do. In this work, the electrical test results for Si-IGBT/4HSiC-Schottky hybrid substrates (hybrid SiC substrates) are presented. These substrates are built for two voltage ratings, 1.7 kV and 3.3 kV. Comparisons of the 1.7 kV and the 3.3 kV Si-IGBT/Si-diode substrates (Si substrates) at room temperature ($20^{\circ}C$, RT) and high temperature ($H125^{\circ}C$, HT) have shown that the switching losses in hybrid SiC substrates are miniscule as compared to those in Si substrates but necessary steps are required to mitigate the ringing observed in the current waveforms. Also, the effect of design variations on the electrical performance of 1.7 kV, 50 A diodes is reported here. These variations are made in the active and termination regions of the device.

A Hybrid Blockchain-Based Approach for Secure and Efficient IoT Identity Management

  • Abdulaleem Ali Almazroi;Nouf Atiahallah Alghanmi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.11-25
    • /
    • 2024
  • The proliferation of IoT devices has presented an unprecedented challenge in managing device identities securely and efficiently. In this paper, we introduce an innovative Hybrid Blockchain-Based Approach for IoT Identity Management that prioritizes both security and efficiency. Our hybrid solution, strategically combines the advantages of direct and indirect connections, yielding exceptional performance. This approach delivers reduced latency, optimized network utilization, and energy efficiency by leveraging local cluster interactions for routine tasks while resorting to indirect blockchain connections for critical processes. This paper presents a comprehensive solution to the complex challenges associated with IoT identity management. Our Hybrid Blockchain-Based Approach sets a new benchmark for secure and efficient identity management within IoT ecosystems, arising from the synergy between direct and indirect connections. This serves as a foundational framework for future endeavors, including optimization strategies, scalability enhancements, and the integration of advanced encryption methodologies. In conclusion, this paper underscores the importance of tailored strategies in shaping the future of IoT identity management through innovative blockchain integration.

A full-range hybrid device for sound reproduction

  • Braghin, Francesco;Castelli-Dezza, Francesco;Cinquemani, Simone;Resta, Ferruccio
    • Smart Structures and Systems
    • /
    • 제11권6호
    • /
    • pp.605-621
    • /
    • 2013
  • The paper deals with the design of a device for sound reproduction to be fixed to a supporting surface. The device is made up of two different types of acoustic actuators based on different technologies. This allows to reproduce sound in the range of frequencies from 20 Hz to 20 kHz. The generation of sound at high frequencies is demanded to a magnetostrictive actuator, while a more traditional magnetodynamics actuator is used to generate sound at low frequencies. The coupling between these two actuators leads to a device having small overall dimensions and high performance.

Device Applications of Graphene and Their Challenges

  • Lee, B.H.;Hwang, H.J.;Yang, J.H.;Baek, E.J.;Kang, S.C.;Lee, Y.G.;Kang, C.G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.114-114
    • /
    • 2012
  • Even though graphene was introduced with a great hope to replace silicon in future, small (or zero) band gap and poor stability have become major challenges in graphene electronics. Especially, rectification and amplification function which are the elemental functions of silicon device, is very difficult to implement without a bandgap. However, the graphene can still be used in many other device applications if the merits of graphene are creatively utilized. For example, graphene can be applied to almost any kind of substrate. Its conductivity can be varied in some degree using electric field, charge dipole, attached molecules, and many other ways. Recently, graphene stacked with ferroelectric materials or piezoelectric materials has been actively studied for various device applications. In this talk, various device applications of graphene using hybrid stack or novel device structure will be introduced and their prospect will be discussed.

  • PDF

Single-Electron Pass-Transistor Logic with Multiple Tunnel Junctions and Its Hybrid Circuit with MOSFETs

  • Cho, Young-Kyun;Jeong, Yoon-Ha
    • ETRI Journal
    • /
    • 제26권6호
    • /
    • pp.669-672
    • /
    • 2004
  • To improve the operation error caused by the thermal fluctuation of electrons, we propose a novel single-electron pass-transistor logic circuit employing a multiple-tunnel junction (MTJ) scheme and modulate a parameters of an MTJ single-electron tunneling device (SETD) such as the number of tunnel junctions, tunnel resistance, and voltage gain. The operation of a 3-MTJ inverter circuit is simulated at 15 K with parameters $C_g=C_T=C_{clk}=1\;aF,\;R_T=5\;M{\Omega},\;V_{clk}=40\;mV$, and $V_{in}=20\;mV$. Using the SETD/MOSFET hybrid circuit, the charge state output of the proposed MTJ-SETD logic is successfully translated to the voltage state logic.

  • PDF