DOI QR코드

DOI QR Code

Use of 1.7 kV and 3.3 kV SiC Diodes in Si-IGBT/ SiC Hybrid Technology

  • Sharma, Y.K. (Dynex Semiconductor LTD) ;
  • Coulbeck, L. (Dynex Semiconductor LTD) ;
  • Mumby-Croft, P. (Dynex Semiconductor LTD) ;
  • Wang, Y. (Dynex Semiconductor LTD) ;
  • Deviny, I. (Dynex Semiconductor LTD)
  • Received : 2018.04.16
  • Accepted : 2018.07.06
  • Published : 2018.11.15

Abstract

Replacing conventional Si diodes with SiC diodes in Si insulated gate bipolar transistor (IGBT) modules is advantageous as it can reduce power losses significantly. Also, the fast switching nature of the SiC diode will allow Si IGBTs to operate at their full high-switching-speed potential, which at present conventional Si diodes cannot do. In this work, the electrical test results for Si-IGBT/4HSiC-Schottky hybrid substrates (hybrid SiC substrates) are presented. These substrates are built for two voltage ratings, 1.7 kV and 3.3 kV. Comparisons of the 1.7 kV and the 3.3 kV Si-IGBT/Si-diode substrates (Si substrates) at room temperature ($20^{\circ}C$, RT) and high temperature ($H125^{\circ}C$, HT) have shown that the switching losses in hybrid SiC substrates are miniscule as compared to those in Si substrates but necessary steps are required to mitigate the ringing observed in the current waveforms. Also, the effect of design variations on the electrical performance of 1.7 kV, 50 A diodes is reported here. These variations are made in the active and termination regions of the device.

Keywords

References

  1. J. Biela, M. Schweizer, S. Waffler and J. W.Kolar, IEEE Transactions on Industrial Electronics 58, 28722872 (2011).
  2. L. Wu, J. Qin, M. Saeedifard, O. Wasynczuk and K. Shenai, IEEE Transactions on Electron Devices 62, 286 (2015). https://doi.org/10.1109/TED.2014.2375875
  3. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas and A. Rebollo, IEEE Transactions on Power Electronics 29, 2155 (2014). https://doi.org/10.1109/TPEL.2013.2268900
  4. N. Murayama, K. Hirao, M. Sando, T. Tsuchiya and H. Yamaguchi, Ceramics International 44, 3523 (2017).
  5. Y. Sharma, Advanced $SiO_2$/SiC Interface Passivation, PhD diss., 2012.
  6. T. Kimoto, Japanese Journal of Applied Physics 54, 040103 (2015). https://doi.org/10.7567/JJAP.54.040103
  7. D. Han, Y. Li and B. Sarlioglu in IEEE Applied Power Electronics Conference and Exposition (APEC) (2015), p. 304.
  8. D. Han, J. Noppakunkajorn and B. Sarlioglu, IEEE Transactions on Vehicular Technology 63, 3001 (2014). https://doi.org/10.1109/TVT.2014.2323193
  9. https://www.wolfspeed.com/power/products.
  10. http://www.rohm.com/web/eu/groups/-/group/groupname/SiC%20Power%20Devices.
  11. https://www.infineon.com/cms/en/product/power/silicon-carbide-sic/.
  12. K. Ishikawa, K. Terasawa, T. Sakai, S. Sugimoto and T. Nishino, Hitachi Review 66, 155 (2017).
  13. V. Esteve, J. Jordan, E. Sanchis-Kilders, J. Dede, E. Maset and E. Ferreres, IEEE Transactions on Industrial Electronics 62, 1440 (2015).
  14. Y. Yang, B. Duan, S. Yuan and H. Jia, in Advanced Silicon Carbide Devices and Processing (2015), p. 175.
  15. M. Bhatnagar, P. K. McLarty and B. J. Baliga, IEEE Electron Device Letters 13, 501 (1992). https://doi.org/10.1109/55.192814
  16. B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer US, 2010) Vol. 1, chap. 1, p. 1.