• Title/Summary/Keyword: Hybrid column

Search Result 153, Processing Time 0.021 seconds

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Experimental study on axial compressive behavior of hybrid FRP confined concrete columns

  • Li, Li-Juan;Zeng, Lan;Xu, Shun-De;Guo, Yong-Chang
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.395-404
    • /
    • 2017
  • In this paper, the mechanical property of CFRP, BFRP, GFRP and their hybrid FRP was experimentally studied. The elastic modulus and tensile strength of CFRP, BFRP, GFRP and their hybrid FRP were tested. The experimental results showed that the elastic modulus of hybrid FRP agreed well with the theoretical rule of mixture, which means the property of hybrid composites are linear with the volumes of the corresponding components while the tensile strength did not. The bearing capacity, peak strain, stress-strain relationship of circular concrete columns confined by CFRP, BFRP, GFRP and hybrid FRP subjected to axial compression were recorded. And the confinement effect of hybrid FRP on concrete columns was analyzed. The test results showed that the bearing capacity and ductility of concrete columns were efficiently improved through hybrid FRP confinement. A strength model and a stress-strain relationship model of hybrid FRP confined concrete columns were proposed. The proposed stress-strain model was shown to be capable of providing accurate prediction of the axial compressive strength of hybrid FRP confined concrete compared with Teng et al. (2002) model, Karbhari and Gao (1997) model and Miyachi et al. (1999) model. The modified stress-strain model was also suitable for single FRP confinement cases and it was so concise in form and didn't have piecewise fitting, which would be easy for use in structural design.

Experimental studies into a new type of hybrid outrigger system with metal dampers

  • Wang, A.J.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.183-194
    • /
    • 2017
  • This paper presents the experimental investigation into a new type of steel-concrete hybrid outrigger system developed for the high-rise building structure. The steel truss is embedded into the reinforced concrete outrigger wall, and both the steel truss and concrete outrigger wall work compositely to enhance the overall structural performance of the tower structures under extreme loads. Meanwhile, metal dampers of low-yield steel material were also adopted as a 'fuse' device between the hybrid outrigger and the column. The damper is engineered to be 'scarified' and yielded first under moderate to severe earthquakes in order to protect the structural integrity of important structural components of the hybrid outrigger system. As such, not brittle failure is likely to happen due to the severe cracking in the concrete outrigger wall. A comprehensive experimental research program was conducted into the structural performance of this new type of hybrid outrigger system. Studies on both the key component and overall system tests were conducted, which reveal the detailed structural response under various levels of applied static and cyclic loads. It was demonstrated that both the steel bracing and concrete outrigger wall are able to work compositely with the low-yield steel damper and exhibits both good load carrying capacities and energy dispersing performance through the test program. It has the potential to be applied and enhance the overall structural performance of the high-rise structures over 300 m under extreme levels of loads.

Real-Time Hybrid Testing Using a Fixed Iteration Implicit HHT Time Integration Method for a Reinforced Concrete Frame (고정반복법에 의한 암시적 HHT 시간적분법을 이용한 철근콘크리트 골조구조물의 실시간 하이브리드실험)

  • Kang, Dae-Hung;Kim, Sung-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.11-24
    • /
    • 2011
  • A real-time hybrid test of a 3 story-3 bay reinforced concrete frame which is divided into numerical and physical substructure models under uniaxial earthquake excitation was run using a fixed iteration implicit HHT time integration method. The first story inner non-ductile column was selected as the physical substructure model, and uniaxial earthquake excitation was applied to the numerical model until the specimen failed due to severe damage. A finite-element analysis program, Mercury, was newly developed and optimized for a real-time hybrid test. The drift ratio based on the top horizontal displacement of the physical substructure model was compared with the result of a numerical simulation by OpenSees and the result of a shaking table test. The experiment in this paper is one of the most complex real-time hybrid tests, and the description of the hardware, algorithm and models is presented in detail. If there is an improvement in the numerical model, the evaluation of the tangent stiffness matrix of the physical substructure model in the finite element analysis program and better software to reduce the computational time of the element state determination for the force-based beam-column element, then the comparison with the results of the real-time hybrid test and the shaking table test deserves to make a recommendation. In addition, for the goal of a "Numerical simulation of the complex structures under dynamic loading", the real time hybrid test has enough merit as an alternative to dynamic experiments of large and complex structures.

Fermentation and Purification of LacZ-Fused Single Chain Insulin Precursor for($B^{30}$-Homoserine) Human Insulin

  • SeungYup Lee;Jeo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.9-12
    • /
    • 1996
  • In order to produce the single chain precursor of a novel human insulin analogue, (B30-Homoserine) insulin, the fermentative behaviors of Escherichia coli JM103 were studied, which harbors pKBA plasmid carrying a hybrid gene in which the gene for a single chain precursor was fused with lacZ gene under tac promoter. The maximal induction of gene expression was achieved when more than 0.05 mM of isopropyl-$\beta$-D-thiogalactopyranoside(IPTG) was supplemented to fermentation medium after 4 h cultivation of E. coli, and followed by longer than 2-h fermentation. The hybrid protein of the single chain insulin precursor was isolated from cytoplasmic inclusion bodies by dissolving in 8M urea solution, and purified through DEAE-Sephacel and Sephadex G-200 column chromatographies with a recovery of 35%. The finally purified hybrid protein showed a single band on sodium dodecyl sulfate-polyacrylamide gel.

  • PDF

Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity

  • Bayat, Mohammad;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • Seismic performance of hybrid steel frames defined as mixture of rigid and semi-rigid connections is investigated in this paper. Three frames with 10, 15 and 20 stories are designed with fully rigid connections and then with 4 patterns for semi-rigid connection placement, some of beam to column rigid connections would turn to semi-rigid. Each semi-rigid connection is considered with 4 different moment capacities and all rigid and semi-rigid frames consisting of 51 models are subjected to 5 selected earthquake records for nonlinear analysis. Maximum story drifts, roof acceleration and base shear are extracted for those 5 earthquake records and average values are obtained for each case. Based on numerical results for the proposed hybrid frames, story drifts remain in allowable range and the reductions in the maximum roof acceleration of 22, 29 and 25% and maximum base shear of 33, 31 and 54% occur in those 10, 15 and 20-story frames, respectively.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

Analytical Performance Evaluation of Structure Reinforced with HRS Damper (고감쇠고무와 강재슬릿의 복합 댐퍼로 보강한 건축물의 해석적 성능평가)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, an incremental loading test of the HRS(Hybrid Rubber Slit) damper was additionally performed to define the physical characteristics according to the incremental test results, and an analytical study was performed according to the damping design procedure by selecting an example structure. As a result of performing seismic performance evaluation before reinforcement by selecting a RC structure similar to an actual school structure as an example structure, the story drift ratio was satisfied, but some column members collapsed due to bending deformation. In order to secure the seismic performance, the damping design procedure of the HRS damper was presented and performed. As a result of calculating the amount of damping device according to the expected damping ratio and applying it to the example structure, the hysteresis behavior was stable without decrease in strength, and the story drift ratio and the shear force were reduced according to the damping effect. Finally the column members that had collapsed before reinforcement satisfied the LS Level.