• 제목/요약/키워드: Hybrid beam

검색결과 479건 처리시간 0.028초

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

Effect of the Photosensitizer on the Photo refractive Effect Using a Low $T_g$ Sol-Gel Glass

  • Choi, Dong-Hoon;Jun, Woong-Gi;Oh, Kwang-Yong;Yoon, Han-Na;Kim, Jae-Hong
    • Macromolecular Research
    • /
    • 제11권4호
    • /
    • pp.250-255
    • /
    • 2003
  • We prepared the photorefractive sol-gel glass based on organic-inorganic hybrid materials containing a charge transporting molecule, second-order nonlinear optical (NLO) chromophore, photosensitizer, and plasticizer. Carbazole and 2-{ 4-[(2-hydroxy-ethyl)-methyl-amino]-benzylidene}-malononitrile were reacted with isocyanato-triethoxy silane and the functionalized silanes were employed to fabricate the efficient photorefractive media induding 2,4,7-trinitrot1uorenone (TNF) to form a charge transfer complex. The prepared sol-gel glass samples showed a large net gain coefficient and high diffraction efficiency at a certain composition. As the concentration of photosensitizer increased, the photorefractive properties were enhanced due to an increment of charge carrier density. Dynamic behavior of the diffraction efficiency was also investigated with the concentration of the photosensitizer.

Developments of Fire-Resistant Wooden Structural Components and Those Applications to Mid- to High-Rise Buildings in Japan

  • Hanai, Atsunari;Nakai, Masayoshi;Matsuzaki, Hiroyuki;Ohashi, Hirokazu
    • 국제초고층학회논문집
    • /
    • 제9권3호
    • /
    • pp.221-233
    • /
    • 2020
  • Based on past experiences of natural disasters and fires in Japan, it is stipulated by law that fire-resistant buildings larger than a certain size should be unique in the world. Recent interest in global environmental issues has led to the active introduction of wooden buildings also in Japan, and it is expected that wooden buildings will become larger and higher in size. This paper introduces the background of the development of fire-resistant laminated timber with a "Self-Charring-Stop layer", the contents of this development including other related developments, and the application of these technologies. In addition, towards the realization of much larger and higher buildings in the future, the current problems and issues to be solved are set and the necessity of the future technological development is described. Finally, a conceptual model of wooden high-rise building is proposed, which will be able to be constructed in 2025 by the further technological development.

Rapid prediction of long-term deflections in composite frames

  • Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.547-563
    • /
    • 2015
  • Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.

강과 알루미늄의 레이저 접합에 관한 연구 Part 1 : 접합 변수의 최적 조건에 관한 연구 (A Study on Laser Joining of Low Carbon Steel and Aluminum Alloy Part 1 : Process Parameters)

  • 박태완;조정호;나석주
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.25-29
    • /
    • 2005
  • Steel has been mainly used in the automotive industry, because of good mechanical properties, weldability and so on. However, there has been increase in using aluminum to reduce the weight of vehicle. This leads to improve fuel efficiency and to reduce air pollution. A steel-aluminum hybrid body structure is recently used not only to reduce the weight of vehicle but also to increase safety. In this paper, the laser beam joining method is suggested to join steel and aluminum. To avoid making brittle intermetallic compounds(IMC) that reduce mechanical properties of the joint area, only aluminum is melted by laser irradiation and wetted on the steel surface. The brittle IMC layer is formed with small thickness at the interface between steel and aluminum. By controlling the process parameters, brittle IMC layer thickness is suppressed under 10 micrometers which is a criterion to maintain good mechanical properties.

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Multi-spectral adaptive vibration suppression of two-path active mounting systems with multi-NLMS algorithms

  • Yang Qiu;Dongwoo Hong;Byeongil Kim
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.393-402
    • /
    • 2023
  • Recently, hybrid and electric vehicles have been actively developed to replace internal combustion engine (ICE) vehicles. However, their vibrations and noise with complex spectra cause discomfort to drivers. To reduce the vibrations transmitted through primary excitation sources such as powertrains, structural changes have been introduced. However, the interference among different parts is a limitation. Thus, active mounting systems based on smart materials have been actively investigated to overcome these limitations. This study focuses on diminishing the source movement when a structure with two active mounting systems is excited to a single sinusoidal and a multi-frequency signal, which were investigated for source movement reduction. The overall structure was modeled based on the lumped parameter method. Active vibration control was implemented based on the modeled structure, and a multi-normalization least mean square (NLMS) algorithm was used to obtain the control input for the active mounting system. Furthermore, the performance of the NLMS algorithm was compared with that of the quantification method to demonstrate the performance of active vibration control. The results demonstrate that the vibration attenuation performance of the source component was improved.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향 (EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS)

  • 오은화;최경규;김종률;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제33권2호
    • /
    • pp.148-161
    • /
    • 2008
  • 본 연구는 상아질 혼성층의 교원섬유를 가수분해하는 효소인 MMPs (Matrix metalloproteinses)의 억제제로 알려진 chlorhexidine (CHX)을 적용 후 결합강도를 측정하였으며, 이를 각각 열순환 처리 후 결합강도를 측정하였다. 또한 주사전자현미경으로 접착계면에서의 파괴 양상을 비교 분석하였다. 우식이 없는 발거한 32개의 제3대구치의 교합면 상아질을 노출시키고 GI그룹에서는 dentin conditioner를 처리 후 2% chlorhexidine을 적용시키고, 산부식 접착제 그룹에서는 인산 산부식을 시행하고 2% chlorhexidine을 적용 후 3단계 산부식형 상아질 접착제 (Scotchbond Multipurpose, SM), 2단계 산부식형 상아질 접착제 (Single Bond, SB)를 도포하고, 자가부식 접착제 그룹에서는 2% chlorhexidine 적용 후 자가부식 상아질 접착제 (Clearfil Tri-S, TS)를 도포한다. 이후 복합 레진 (Z-250)과 GI (Fuji-II LC)를 충전한 시편을 $1\;mm^2$의 단면을 갖는 beam으로 제작하여 열순환 하지 않거나, 10,000회 열순환 ($5\;{\sim}\;55^{\circ}C$)하였다. Universal testing machine (EZ-test; Shimadzu, Japan)에서 cross head speed 1 mm/min로 인장력을 가하여, 미세인장결합강도를 측정하였다. 실험 결과는 유의수준 0.05 level에서 two-way ANOVA를 이용하여 통계분석하였다. 그 후 파절된 시편의 파괴 양상을 현미경 (SEM)으로 관찰하여 다음과 같은 결론을 얻었다; 1. 2% CHX을 적용한 모든 실험군에서 상아질과의 미세인장결합강도가 증가하였고, 열순환은 상아질과의 미세인장결합강도를 감소시켰다 (P > 0.05). 2. CHX 적용 후 열순환 한 군은 CHX을 적용하지 않고 열순환한 군에 비하여 상아질과의 미세인장결합강도가 높았으며, 특히 GI와 TS군에서 유의한 차이를 나타내었다 (P < 0.05). 3. 파괴 양상 분석 결과, 혼성층에서의 접착성 파괴를 보이며, CHX을 적용하면 혼성층 기저부에서 상부로 파괴 부위가 옮겨가는 양상을 나타내었다. 이상의 연구 결과를 토대로, MMPs 억제제인 2% CHX은 글래스 아이오노머 시멘트와 상아질 접착제의 초기 미세인장결합강도에는 영향을 미치지 않으며, CHX 적용이 접착내구성을 유지하는데 도움이 되었다.