• 제목/요약/키워드: Hybrid adaptive

검색결과 459건 처리시간 0.03초

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping;Li, Zongjing
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.397-407
    • /
    • 2017
  • With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Context-aware Based Distributed Clustering for MANET (상황인식 기반의 MANET을 위한 분산 클러스터링 기법)

  • Mun, Chang-min;Lee, Kang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.277-280
    • /
    • 2009
  • Mobile Ad-hoc Network(MANET) could provide the reliable monitoring and control of a variety of environments for remote place. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. In this paper, we propose a new method that the CACH(Context-aware Clustering Hierarchy) algorithm, a hybrid and clustering-based protocol that could analyze the link cost from a source node to a destination node. The proposed analysis could help in defining the optimum depth of hierarchy architecture CACH utilize. The proposed CACH could use localized condition to enable adaptation and robustness for dynamic network topology protocol and this provide that our hierarchy to be resilient.

  • PDF

Hybrid AI Based Process Scheduler for Asymmetric Multicore Processor to Improve Power Efficiency (전력 효율 향상을 위한 하이브리드 인공지능 기반의 비대칭 멀티코어 프로세서용 프로세스 스케줄러)

  • Jeong, Won Seob;Kim, Seung Hun;Lee, Sang-Min;Ro, Won Woo
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.180-183
    • /
    • 2013
  • 근래의 프로세서는 하나의 다이 위에 여러 개의 코어를 배치한 멀티코어 형태를 띠고 있다. 최근에는 프로세서의 에너지 소비량을 줄이기 위해 비대칭 멀티코어를 활용하여 동일한 성능을 유지하며 소비전력을 낮추는 방법에 대한 연구가 활발히 진행되고 있다. 비대칭 멀티코어의 장점을 최대한 활용하기 위해서는 대칭형 멀티코어와는 달리 실행해야 할 프로세스와 상이한 코어간의 작동 특성을 고려해야 한다. 본 논문에서는 전력 소비 효율 향상을 위해 프로세스 스케줄링 알고리즘에 하이브리드 인공지능 기술인 Adaptive Neuro Fuzzy Inference System (ANFIS)를 적용하여 각 프로세스에 적합한 코어를 찾아 할당하는 방법을 제안한다. 시뮬레이션 결과 제안하는 프로세스 스케줄러는 리눅스의 CFS 대비 평균 35.4% 낮은 Energy Delay Product (EDP)를 보였으며 이를 통해 하이브리드 인공지능을 적용한 프로세스 스케줄링 알고리즘의 유효성을 입증하였다.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • 제14권2호
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Multi-spectral adaptive vibration suppression of two-path active mounting systems with multi-NLMS algorithms

  • Yang Qiu;Dongwoo Hong;Byeongil Kim
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.393-402
    • /
    • 2023
  • Recently, hybrid and electric vehicles have been actively developed to replace internal combustion engine (ICE) vehicles. However, their vibrations and noise with complex spectra cause discomfort to drivers. To reduce the vibrations transmitted through primary excitation sources such as powertrains, structural changes have been introduced. However, the interference among different parts is a limitation. Thus, active mounting systems based on smart materials have been actively investigated to overcome these limitations. This study focuses on diminishing the source movement when a structure with two active mounting systems is excited to a single sinusoidal and a multi-frequency signal, which were investigated for source movement reduction. The overall structure was modeled based on the lumped parameter method. Active vibration control was implemented based on the modeled structure, and a multi-normalization least mean square (NLMS) algorithm was used to obtain the control input for the active mounting system. Furthermore, the performance of the NLMS algorithm was compared with that of the quantification method to demonstrate the performance of active vibration control. The results demonstrate that the vibration attenuation performance of the source component was improved.

Scalable Collaborative Filtering Technique based on Adaptive Clustering (적응형 군집화 기반 확장 용이한 협업 필터링 기법)

  • Lee, O-Joun;Hong, Min-Sung;Lee, Won-Jin;Lee, Jae-Dong
    • Journal of Intelligence and Information Systems
    • /
    • 제20권2호
    • /
    • pp.73-92
    • /
    • 2014
  • An Adaptive Clustering-based Collaborative Filtering Technique was proposed to solve the fundamental problems of collaborative filtering, such as cold-start problems, scalability problems and data sparsity problems. Previous collaborative filtering techniques were carried out according to the recommendations based on the predicted preference of the user to a particular item using a similar item subset and a similar user subset composed based on the preference of users to items. For this reason, if the density of the user preference matrix is low, the reliability of the recommendation system will decrease rapidly. Therefore, the difficulty of creating a similar item subset and similar user subset will be increased. In addition, as the scale of service increases, the time needed to create a similar item subset and similar user subset increases geometrically, and the response time of the recommendation system is then increased. To solve these problems, this paper suggests a collaborative filtering technique that adapts a condition actively to the model and adopts the concepts of a context-based filtering technique. This technique consists of four major methodologies. First, items are made, the users are clustered according their feature vectors, and an inter-cluster preference between each item cluster and user cluster is then assumed. According to this method, the run-time for creating a similar item subset or user subset can be economized, the reliability of a recommendation system can be made higher than that using only the user preference information for creating a similar item subset or similar user subset, and the cold start problem can be partially solved. Second, recommendations are made using the prior composed item and user clusters and inter-cluster preference between each item cluster and user cluster. In this phase, a list of items is made for users by examining the item clusters in the order of the size of the inter-cluster preference of the user cluster, in which the user belongs, and selecting and ranking the items according to the predicted or recorded user preference information. Using this method, the creation of a recommendation model phase bears the highest load of the recommendation system, and it minimizes the load of the recommendation system in run-time. Therefore, the scalability problem and large scale recommendation system can be performed with collaborative filtering, which is highly reliable. Third, the missing user preference information is predicted using the item and user clusters. Using this method, the problem caused by the low density of the user preference matrix can be mitigated. Existing studies on this used an item-based prediction or user-based prediction. In this paper, Hao Ji's idea, which uses both an item-based prediction and user-based prediction, was improved. The reliability of the recommendation service can be improved by combining the predictive values of both techniques by applying the condition of the recommendation model. By predicting the user preference based on the item or user clusters, the time required to predict the user preference can be reduced, and missing user preference in run-time can be predicted. Fourth, the item and user feature vector can be made to learn the following input of the user feedback. This phase applied normalized user feedback to the item and user feature vector. This method can mitigate the problems caused by the use of the concepts of context-based filtering, such as the item and user feature vector based on the user profile and item properties. The problems with using the item and user feature vector are due to the limitation of quantifying the qualitative features of the items and users. Therefore, the elements of the user and item feature vectors are made to match one to one, and if user feedback to a particular item is obtained, it will be applied to the feature vector using the opposite one. Verification of this method was accomplished by comparing the performance with existing hybrid filtering techniques. Two methods were used for verification: MAE(Mean Absolute Error) and response time. Using MAE, this technique was confirmed to improve the reliability of the recommendation system. Using the response time, this technique was found to be suitable for a large scaled recommendation system. This paper suggested an Adaptive Clustering-based Collaborative Filtering Technique with high reliability and low time complexity, but it had some limitations. This technique focused on reducing the time complexity. Hence, an improvement in reliability was not expected. The next topic will be to improve this technique by rule-based filtering.

Efficient Algorithms for Motion Parameter Estimation in Object-Oriented Analysis-Synthesis Coding (객체지향 분석-함성 부호화를 위한 효율적 움직임 파라미터 추정 알고리듬)

  • Lee Chang Bum;Park Rae-Hong
    • The KIPS Transactions:PartB
    • /
    • 제11B권6호
    • /
    • pp.653-660
    • /
    • 2004
  • Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.

Interleaver Design for Mobile Satellite Communication Systems Using LTE based AMC Scheme (이동 위성통신 시스템에서의 LTE 기반 AMC 방식을 위한 인터리버 설계)

  • Yeo, Sung-Moon;Hong, Tae-Chul;Kim, Soo-Young;Song, Sang-Seob;Ahn, Do-Seob
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제47권3호
    • /
    • pp.8-15
    • /
    • 2010
  • Due to the increasing demand of network convergence, in future, hybrid/integrated satellite and terrestrial systems will play an important role. In that case, compatibilities between the satellite and terrestrial systems are very important for efficiency of the systems. 3GPP Long Term Evolution (LTE) is one of the most powerful candidates of the 4G system Therefore, in this paper, we introduce the design of interleaver for mobile satellite system based 3GPP LTE specification. The 4G system including the LTE specification adopted adaptive modulation and coding (AMC) schemes for efficient usage of resources, and the updating interval of resource allocation is an order of msec. However, because of the long round trip delay of satellite systems, we cannot employ the same AMC scheme specified for the terrestrial system, and thus it cannot effectively counteract to short term fadings. Therefore, in order to overcome these problems, we propose an interleaver scheme combined with AMC. We present the interleaγer design results considering mobile satellite system based on the LTE and analyze the simulation results.

Hardware Design of High Performance In-loop Filter in HEVC Encoder for Ultra HD Video Processing in Real Time (UHD 영상의 실시간 처리를 위한 고성능 HEVC In-loop Filter 부호화기 하드웨어 설계)

  • Im, Jun-seong;Dennis, Gookyi;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.401-404
    • /
    • 2015
  • This paper proposes a high-performance in-loop filter in HEVC(High Efficiency Video Coding) encoder for Ultra HD video processing in real time. HEVC uses in-loop filter consisting of deblocking filter and SAO(Sample Adaptive Offset) to solve the problems of quantization error which causes image degradation. In the proposed in-loop filter encoder hardware architecture, the deblocking filter and SAO has a 2-level hybrid pipeline structure based on the $32{\times}32CTU$ to reduce the execution time. The deblocking filter is performed by 6-stage pipeline structure, and it supports minimization of memory access and simplification of reference memory structure using proposed efficient filtering order. Also The SAO is implemented by 2-statge pipeline for pixel classification and applying SAO parameters and it uses two three-layered parallel buffers to simplify pixel processing and reduce operation cycle. The proposed in-loop filter encoder architecture is designed by Verilog HDL, and implemented by 205K logic gates in TSMC 0.13um process. At 110MHz, the proposed in-loop filter encoder can support 4K Ultra HD video encoding at 30fps in realtime.

  • PDF