• 제목/요약/키워드: Hybrid adaptive

검색결과 459건 처리시간 0.028초

서로 다른 진화 특성을 가지는 부집단들을 사용한 새로운 하이브리드 진화 프로그래밍 기법과 카메라 보정 응용 (A New Hybrid Evolutionary Programming Technique Using Sub-populations with Different Evolutionary Behaviors and Its Application to Camera Calibration)

  • 조현중;오세영;최두현
    • 전자공학회논문지C
    • /
    • 제35C권9호
    • /
    • pp.81-92
    • /
    • 1998
  • 실수형 최적화 문제의 전역 최적해를 빠르고 정확하게 찾을 가능성을 높이기 위해, 서로 다른 진화특성을 가지는 여러 부집단들을 사용한 새로운 하이브리드 기법이 제안된다. 제안된 알고리듬은 세 개의 부집단을 사용하는데, 복잡한 적합도 함수를 가지는 문제에서 좋은 성능을 보이는 NPOSA 알고리듬이 두개의 부집단에 적용되고, 진화 방향과 크기가 조절되는 자기 적응 진화 알고리듬이 나머지 하나의 부집단에 적용되었다. 각 부집단들은 서로 다른 방법으로 진화하며 부집단들간의 상호교류를 통해 전역 최적해로 빠르게 도달하게 한다. 이 기법의 효율성은 몇 개의 표준 테스트 문제들을 사용하여 검증하였다. 마지막으로, 제안한 알고리듬이 실제 문제에 적용 가능함을 보이기 위해 카메라 파라메터의 최적값을 찾는 문제에 적용하였다. 보정 블럭에서 측정된 특징점들을 사용하여 오차 함수를 정의한 후, 하이브리드 방법이 그 오차 함수를 최소화하는 카메라 파라메터의 값을 찾을 수 있음을 보였다.

  • PDF

듀얼 스트리밍 기법을 활용한 실시간 스트리밍 시스템 (A Study on Real-time Streaming System Using the Dual-Streaming Technique)

  • 반태학;김응렬;양새동;김호성;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.791-793
    • /
    • 2015
  • 최근 들어 UCC(User Created Contents) 및 VoD(Video on Demand) 등 멀티미디어 컨텐츠들이 늘어나고, IP-TV, Smart TV, OHTV(Open Hybrid TV) 등 다양한 서비스가 멀티 플랫폼(Multi-platform) 환경에서 제공되면서, 서비스에 대한 QoS 문제가 대두되고 있다. 이 문제를 해결하기 위해 네트워크를 효율적으로 활용하고, 콘텐츠 품질을 향상하기 위한 시스템이 필요하다. 이에 본 논문에서는 네트워크의 채널 상태와 동적 자원 사용량에 따라 멀티미디어 데이터의 전송을 TCP와 UDP를 적응적으로 사용하는 듀얼 스트리밍 시스템에 대해 설계 및 분석 한다. 또한 기존 TCP와 UDP 하나의 프로토콜을 사용한 스트리밍 시스템과의 차이점 및 효율성에 대해 분석한다. 이는 재난 및 의료분의의 응급시스템, 유비쿼터스 분야에 활용될 것으로 사료된다.

  • PDF

하이브리드 셋업을 이용한 에너지 효율적 센서 네트워크 클러스터링 (An Energy-Efficient Sensor Network Clustering Using the Hybrid Setup)

  • 민홍기
    • 융합신호처리학회논문지
    • /
    • 제12권1호
    • /
    • pp.38-43
    • /
    • 2011
  • 센서 네트워크에서 사용되는 동적 클러스터링 방식은 주기적으로 클러스터 구조가 바뀌는 셋업과정으로 인한 에너지 소모가 크다. 셋업과정은 보안적용을 해야 할 경우 보안 키가 주기적으로 재 생성되는 등 클러스터 구성 이외에 추가적인 에너지 낭비가 발생한다. 본 논문은 최초에 구성된 클러스터 알고리즘과 이후 반복적으로 발생되는 클러스터 재셋업 알고리즘을 달리하는 하이브리드 방식을 제안한다. 재 셋업에서는 고정된 클러스터 내에서 순환적으로 클러스터 헤드노드를 선출하는 순환적 클러스터 헤드선정(RRCH: Round-Robin Cluster Header)방식을 이용하여 에너지 소모를 줄인다. 보안키 생성 및 적용으로 추가되는 에너지 소모는 클러스터가 지속적으로 고정되기 때문에 최초 클러스터 형성 때 사전 배포하는 방식으로 해결된다. 본 논문에서 제안한 방식의 타당성을 확인하기 위해 모의실험을 실시하였다. 라운드 구간을 100번 반복하여 클러스터 구성과 데이터 전송을 포함한 전체 에너지 소모량을 측정하였다. 결과는 제안한 방식이 LEACH방식보다 평균 26.5%, HEED방식보다 평균 20% 적게 소모되는 것을 확인하였다.

Intrusion Detection System Modeling Based on Learning from Network Traffic Data

  • Midzic, Admir;Avdagic, Zikrija;Omanovic, Samir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5568-5587
    • /
    • 2018
  • This research uses artificial intelligence methods for computer network intrusion detection system modeling. Primary classification is done using self-organized maps (SOM) in two levels, while the secondary classification of ambiguous data is done using Sugeno type Fuzzy Inference System (FIS). FIS is created by using Adaptive Neuro-Fuzzy Inference System (ANFIS). The main challenge for this system was to successfully detect attacks that are either unknown or that are represented by very small percentage of samples in training dataset. Improved algorithm for SOMs in second layer and for the FIS creation is developed for this purpose. Number of clusters in the second SOM layer is optimized by using our improved algorithm to minimize amount of ambiguous data forwarded to FIS. FIS is created using ANFIS that was built on ambiguous training dataset clustered by another SOM (which size is determined dynamically). Proposed hybrid model is created and tested using NSL KDD dataset. For our research, NSL KDD is especially interesting in terms of class distribution (overlapping). Objectives of this research were: to successfully detect intrusions represented in data with small percentage of the total traffic during early detection stages, to successfully deal with overlapping data (separate ambiguous data), to maximize detection rate (DR) and minimize false alarm rate (FAR). Proposed hybrid model with test data achieved acceptable DR value 0.8883 and FAR value 0.2415. The objectives were successfully achieved as it is presented (compared with the similar researches on NSL KDD dataset). Proposed model can be used not only in further research related to this domain, but also in other research areas.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템 (Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier)

  • 이응주;이수현;김성진
    • 한국멀티미디어학회논문지
    • /
    • 제8권11호
    • /
    • pp.1496-1509
    • /
    • 2005
  • 본 논문에서는 투영면 컨벌루션과 결정트리 분류기법을 사용하여 주변 환경이 복잡한 차량영상으로부터 실시간으로 번호판을 추출하고 인식하는 적응적 차량번호판 인식 시스템을 제안하였다. 일반적으로 고속도로 톨게이트와 주차장 출입구에서의 차량영상은 설치 카메라와 도로 환경에 따라 차량번호판의 크기, 각도변화, 주변잡음 등으로 매우 다양하므로 번호판 추출과 분할이 어렵다. 따라서 본 논문에서는 차량 영상을 획득한 후 번호판 후보영역을 검출하고 진입 위치 변화에 따라 번호판의 기울기와 크기를 자동으로 보정하여 인식하는 알고리즘을 제안하였다. 제안한 인식 방법은 차량의 에지누적 분포와 번호판의 일정한 명암값 변화 빈도수를 누적한 투영면 컨벌루션과 체인코드를 사용하여 크기와 기울기가 일정하지 않은 번호판으로부터 번호판영역을 정확히 추출하고, 적응적 이진화 기법을 이용하여 문자를 분할하였다. 본 논문에서 제안한 방법으로써 실험한 결과 복잡한 영상에서 전방 및 후방 차량영상으로부터 번호판 인식이 가능하였으며 각각 $98.8\%$$95.5\%$의 추출률과 분할된 문자영역에서 $97.3\%$$96\%$의 인식률 개선 결과를 나타내었다.

  • PDF

실시간 얼굴 검출을 위한 Cascade CNN의 CPU-FPGA 구조 연구 (Cascade CNN with CPU-FPGA Architecture for Real-time Face Detection)

  • 남광민;정용진
    • 전기전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.388-396
    • /
    • 2017
  • 얼굴 검출에는 다양한 포즈, 빛의 세기, 얼굴이 가려지는 현상 등의 많은 변수가 존재하므로, 높은 성능의 검출 시스템이 요구된다. 이에 영상 분류에 뛰어난 Convolutional Neural Network (CNN)이 적절하나, CNN의 많은 연산은 고성능 하드웨어 자원을 필요로한다. 그러나 얼굴 검출을 위한 소형, 모바일 시스템의 개발에는 저가의 저전력 환경이 필수적이고, 이를 위해 본 논문에서는 소형의 FPGA를 타겟으로, 얼굴 검출에 적절한 3-Stage Cascade CNN 구조를 기반으로하는 CPU-FPGA 통합 시스템을 설계 구현한다. 가속을 위해 알고리즘 단계에서 Adaptive Region of Interest (ROI)를 적용했으며, Adaptive ROI는 이전 프레임에 검출된 얼굴 영역 정보를 활용하여 CNN이 동작해야 할 횟수를 줄인다. CNN 연산 자체를 가속하기 위해서는 FPGA Accelerator를 이용한다. 가속기는 Bottleneck에 해당하는 Convolution 연산의 가속을 위해 FPGA 상에 다수의 FeatureMap을 한번에 읽어오고, Multiply-Accumulate (MAC) 연산을 병렬로 수행한다. 본 시스템은 Terasic사의 DE1-SoC 보드에서 ARM Cortex A-9와 Cyclone V FPGA를 이용하여 구현되었으며, HD ($1280{\times}720$)급 입력영상에 대해 30FPS로 실시간 동작하였다. CPU-FPGA 통합 시스템은 CPU만을 이용한 시스템 대비 8.5배의 전력 효율성을 보였다.

An SNR Scalable Video Coding using Linearly Combined Motion Vectors

  • Ryu, Chang-Hoon;Byoungjun Han;Park, Kwang-Pyo;Yoon, Eung-Sik;Lee, Keun-Young
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.50-53
    • /
    • 2002
  • There are increasing needs to deliver the multimedia streaming over heterogeneous networks. When considering network environments and equipment accessed by user, delivery of video streaming must be scalable. There are many kinds of scalable video coding: spatial, temporal, SNR, and hybrid. The SNR scalable and spatial resolution, but different SNR quality with respect to layers. The 1-layer SNR scalable encoder produces SNR scalable video streams with ease. But, there is drift problem. Modified 1-layer approach does not have this problem but coding inefficiency, and is not MPEG-compliant. The present MPEG-compliant 2-layer encoder comes out to reduce coding rate. But it still use only base layer to encode whole layer. In this paper, we propose adaptive MPEG-compliant 2-layer encoder. Using linear combination algorithm, encoder use 1 motion vector to encode the sequences efficiently. By dong this, we can achieve the coding efficiency of SNR scalable coding.

  • PDF

무선 센서 네트워크 기반 에너지 효율성이 개선된 MAC 프로토콜 설계 (Design by Improved Energy Efficiency MAC Protocol based on Wireless Sensor Networks)

  • 이철승
    • 한국전자통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.439-444
    • /
    • 2017
  • 무선 센서 네트워크 기술은 유비쿼터스 컴퓨팅 환경의 급성장중인 기술이며 다양한 분야에서 응용과 연구가 진행 되고 있다. 무선 센서 네트워크를 구성하는 센서 노드들은 분산 네트워크 환경에서 배터리를 이용하여 Life cycle을 유지하기 때문에 QoS 요구보다는 에너지 효율이 매우 중요하다. 이러한 사항을 고려하여 IEEE802.15.4의 MAC 프로토콜에서는 트래픽에 적응적인 MAC 프로토콜 연구와 무선 센서 네트워크 환경에 신뢰성과 효율성이 강조된 표준화 작업을 진행중에 있지만, 에너지 효율이 줄어든 만큼 센서 노드의 응답속도가 떨어지는 문제점을 지니고 있다. 이에 본 논문은 동기식 방식과 하이브리드 방식의 MAC 프로토콜을 분석하여 전체네트워크의 에너지 효율이 개선된 MAC 프로토콜을 설계하였다.

인공 신경망에 의한 유도전동기의 센서리스 벡터제어 (Sensorless Vector Control of Induction Motor by Artificial Neural Network)

  • 정병진;고재섭;최정식;김도연;박기태;최정훈;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.307-312
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF