• Title/Summary/Keyword: Hybrid Storage System

Search Result 328, Processing Time 0.033 seconds

Optimized Installation and Operations of Battery Energy Storage System and Electric Double Layer Capacitor Modules for Renewable Energy Based Intermittent Generation

  • Min, Sang Won;Kim, Seog Ju;Hur, Don
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.238-243
    • /
    • 2013
  • In this paper, a novel approach for optimized installation and operations of battery energy storage system (BESS) and electric double layer capacitor (EDLC) modules for the renewable energy based intermittent generation is presented for them to be connected with an electric power grid. In order to make use of not merely the high energy density of battery but also the high power density of EDLC modules, it is very useful to devise the hybrid system which combines BESS and EDLC modules. The proposed method adopts the linear programming to calculate the optimized capacity as well as the quadratic programming to transmit the optimal operational signals to BESS and EDLC modules. The efficiency of this methodology will be demonstrated in the experimental study with the real data of wind speed in Texas.

Battery integrated PV DC-Module for power optimization in PV-Battery Hybrid generation system (태양광-배터리 복합발전시스템의 전력 최적화를 위한 배터리 집적형 PV-DC 모듈)

  • Choi, Cheul-Woong;Choi, Bong-Yeon;Noh, Yong-Su;Ji, Young-Hyok;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.147-148
    • /
    • 2012
  • Recently, hybrid generation systems combine multiple energy sources or storage components to optimize the characteristics of the individual energy sources. In this paper, a battery integrated PV power optimizer for PV-battery hybrid power generation system is proposed. PV system using proposed topology can easily increase battery capacity and remove high power bidirectional converter to control bulky battery bank.

  • PDF

Generation of electricity Characteristics with Weather Conditions of Photocoltaics-Wind Power Hybrid System (태양광.풍력 복합발전시스템의 기상조건에 따른 발전특성)

  • Kang, Gi-Hwan;Jeong, Young-Seok;Yu, Gwon-Jong;Jeong, Myung-Woong;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2581-2583
    • /
    • 1999
  • The PV-Wind hybrid system was installed in the island where the solar and wind energy was compensated each other. The installed hybrid system, 10kWp-PV and 10kW-wind capacity, was monitored with the varying solar intensity and wind speed, under the minimum capacity of the storage battery.

  • PDF

An application of LAPO: Optimal design of a stand alone hybrid system consisting of WTG/PV/diesel generator/battery

  • Shiva, Navid;Rahiminejad, Abolfazl;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.67-84
    • /
    • 2020
  • Given the recent surge of interest towards utilization of renewable distributed energy resources (DER), in particular in remote areas, this paper aims at designing an optimal hybrid system in order to supply loads of a village located in Esfarayen, North Khorasan, Iran. This paper illustrates the optimal design procedure of a standalone hybrid system which consists of Wind Turbine Generator (WTG), Photo Voltaic (PV), Diesel-generator, and Battery denoting as the Energy Storage System (ESS). The WTGs and PVs are considered as the main producers since the site's ambient conditions are suitable for such producers. Moreover, batteries are employed to smooth out the variable outputs of these renewable resources. To this end, whenever the available power generation is higher than the demanded amount, the excess energy will be stored in ESS to be injected into the system in the time of insufficient power generation. Since the standalone system is assumed to have no connection to the upstream network, it must be able to supply the loads without any load curtailment. In this regard, a Diesel-Generator can also be integrated to achieve zero loss of load. The optimal hybrid system design problem is a discrete optimization problem that is solved, here, by means of a recently-introduced meta-heuristic optimization algorithm known as Lightning Attachment Procedure Optimization (LAPO). The results are compared to those of some other methods and discussed in detail. The results also show that the total cost of the designed stand-alone system in 25 years is around 92M€ which is much less than the grid-connected system with the total cost of 205M€. In summary, the obtained simulation results demonstrate the effectiveness of the utilized optimization algorithm in finding the best results, and the designed hybrid system in serving the remote loads.

A Study on the Improved EDR Storage Data to Identify the Cause of Unintended Acceleration of Eco-friendly Vehicles (친환경 자동차의 급발진 원인 규명을 위한 EDR 저장 데이터 개선방안 연구)

  • Lee, Sang Bae;Kim, Dong Han;Moon, Byoung Joon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we propose the improved EDR (Event Data Recorder) storage data, which can identify the cause of unintended acceleration of eco-friendly vehicles. The proposed EDR storage data includes the brake pressure sensor value and a brake pedal travel sensor value. To verify the proposed EDR storage data, we observe the control algorithm and internal structure of the vehicle dynamic control system and a regenerative braking system in an eco-friendly vehicle.

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Study on Heating Performance of Hybrid Heat Pump System Using Geothermal Source and Solar Heat for Protected Horticulture (시설원예용 지열 및 태양열 이용 하이브리드 히트펌프 시스템의 난방성능에 관한 연구)

  • Jeon, Jong Gil;Lee, Dong Geon;Paek, Yee;Kim, Hyung Gweon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.49-56
    • /
    • 2015
  • In this study a hybrid heating system based on geothermal source and solar heat was developed in order to save energy for greenhouse heating and its field performance was evaluated. Developed system are composed of following parts: water tank, heat exchanger, heat pump, fan coil unit and heat storage unit. The working performance test was carried out in a greenhouse cultivating oriental orchids being managed by $23^{\circ}C$. Field performance test results showed that average heating coefficient of performance ($COP_h$) was 3.4 for the period from mid-January to mid-March 2013. Heating coefficient of performance ($COP_h$) of developed hybrid heat pump system was more sensitive to water tank temperature than outside air temperature. This study showed that developed hybrid heat pump system has a potential to save the heating costs up to 91% compared to conventional agricultural oil heaters.

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.

The hybrid heat pump with solar energy for heating (태양열이용 하이브리드 난방 열펌프시스템)

  • Kim, Ji-Young;Ko, Gwang-Soo;Kang, Byung-Chan;Park, Youn-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.173-178
    • /
    • 2005
  • Recently. we interested in renewable energy due to cost increase of the crude oil, etc. In this study solar assisted hybrid heat pump system that uses the solar heat and air as heat source analyzed by experimentally.'rho system could runs at dual mode. One is thermal storage mode of solar energy at day time and the other is heat pump mode with low temperature air as heat source at night time. In case of setting temperature over the limited range. high temperature water heated at the solar energy collecting tubes supplied to the storage tank. As results. it is founded that the heat pump performance Is higher than general heat pump which using the only air as a heat source. The developed system could be used as main healing equipment for the panel heating for the residential house.

  • PDF

The Study on Development of PV-ES hybrid system for Mongolian Household (몽골의 가정용 PV-ES 하이브리드 시스템 개발을 위한 연구)

  • Battuvshin, B;Turmandakh, B;Park, Joon Hyung;Bayasgalan, D
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1905-1912
    • /
    • 2017
  • In recent years, Ulaanbaatar, a capital of Mongolia has witnessed major problem that air quality reaches hazardous level during the winter season. Coal combustion for heating of every house in "Ger" district is main reason. One way to reduce the air pollution is mass usage of electric heater. However, there are several difficulties such as overload and degradation of transformers and other equipment used in distribution and transmission systems as well as power shortage occurrence in evening peak period due to residential consumption. This study aims to contribute for solving the air pollution and power shortage problem in Mongolia. One possible solution could be distributed generation (DG) with photovoltaic (PV) penetration. In this study, PV with energy storage (ES) hybrid system to reduce peak load is analyzed. We proposed the suitable structure of PV-ES hybrid for Mongolian household, and suggested several operation scenarios. Optimal operation algorithm is carried out based on a comparison aspect from economical, grid impact and PV penetration possibility. The economic analyse shows annual income of 520USD, and has a payback period of 8 years for selected scenario. The proposed PV-ES system structure is verified by experimentation set on the building rooftop in city center. The suggested scenario is planned to apply for system in further research.