• 제목/요약/키워드: Hybrid SOM

검색결과 23건 처리시간 0.022초

Hybrid Self Organizing Map using Monte Carlo Computing

  • 전성해;박민재;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

하이브리드 SOM을 이용한 효율적인 지식 베이스 관리 (An Efficient Knowledge Base Management Using Hybrid SOM)

  • 윤경배;최준혁;왕창종
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.635-642
    • /
    • 2002
  • 정보 기술 분야의 지능화 요구는 매우 빠르게 증가하고 있다. 특히 대량의 데이터로부터 지식을 찾아내어 최적의 의사결정을 해야하는 KDD(Knowledge Discovery in Database)분야에서는 그 요구가 더욱 더 크게 된다. 지능화된 의사결정을 위해서는 대용량 지식 베이스(Knowledge Base)의 효율적인 관리가 무엇보다도 중요하다. 본 논문에서는 이러한 지식 베이스로부터 의사결정 관리에 필요한 지식을 얻기 위해 효율적으로 지식 베이스를 검색하고 갱신하는 관리 방법을 위해 자율학습 신경망인 자기조직화 지도에 확률적 분포 이론을 결합한 하이브리드(Hybrid) SOM을 제안한다. 제안 방법을 이용한 효율적 지식 베이스의 관리를 시뮬레이션 실험을 통하여 수행하였다. 실험을 통해 본 논문에서 제안하는 Hybrid SOM이 지식 베이스 관리에 효율적인 성능을 나타냄이 증명되었다.

하이브리드 SOM을 이용한 동적 웹 정보 추천 기법 (Dynamic Web Recommendation Method Using Hybrid SOM)

  • 윤경배;박창희
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.471-476
    • /
    • 2004
  • 최근, 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 인터넷 쇼핑몰등을 대상으로 활발히 진행되고 있다. 그 중 SOM(Self-Organizing Feature Maps)을 이용한 동적 웹 정보 추천 기법은 빠른 수행 속도와 간편하게 사용할 수 있는 장점이 존재하나, 모형에 대한 설명력 부족 및 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 단점이 존재한다. 본 논문에서는 이러한 단점인 모형에 대한 설명력 부족을 베이지안 추론 기법으로 해결하며, 하이브리드 SOM을 이용하여 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 것이 아니라 가중치가 속하게 되는 분포가 결정되도록 한다. 이러한 하이브리드 SOM을 이용하여 동적 웹 정보 추천 기법을 설계하고 구현하여 기존의 웹 정보 추천 기법과 성능 비교를 수행한 결과, 제안된 기법의 우수함이 입증되었다.

Hybrid Kohonen 네트워크에 의한 항공영상 클러스터링 (Areal Image Clustering using Hybrid Kohonen Network)

  • 이경희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.250-251
    • /
    • 2015
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.

  • PDF

혼합형 신경회로망을 이용한 얼굴 인식 (Face Recognition using a Hybrid Neural Network)

  • 정경권;임중규;김주웅;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.800-803
    • /
    • 2006
  • 본 논문에서는 여러 환경 변화에 민감한 특성을 가지고 있는 얼굴 인식의 성능 향상을 위해 혼합형 신경회로망 방식을 제안한다. 제안한 방식은 SOM과 LVQ를 이용하여 얼굴 인식의 성능을 향상시킨다. 제안한 방식의 유용성을 확인하기 위하여 ORL의 얼굴 영상을 이용하여 시뮬레이션을 수행하였다. 시뮬레이션 결과 제안한 방식이 고유얼굴 방식이나 은닉 마코프 모델 방식, 다층 신경회로망 방식보다 우수함을 확인하였다.

  • PDF

앙상블 Support Vector Machine과 하이브리드 SOM을 이용한 동적 웹 정보 추천 시스템 (Dynamic Recommendation System of Web Information Using Ensemble Support Vector Machine and Hybrid SOM)

  • 윤경배;최준혁
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.433-438
    • /
    • 2003
  • 최근, 인터넷 쇼핑몰과 같은 웹 사이트를 대상으로 각 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 활발히 진행되고 있다. 사용자 프로파일과 명시적 피드백에 의존하는 대부분의 웹 정보 추천 시스템의 경우 사용자의 다양하고 정확한 정보를 필요로 하지만 실세계의 문제에 있어 이러한 연관 정보를 얻기란 쉽지 않다. 본 논문에서는 사용자의 명시적 피드백과 프로파일에 의존하지 않는 웹 정보 서비스를 위한 정보 예측 기법을 제안한다. 이를 위해 앙상블 Support Vector Machine과 하이브리드 SOM을 설계하고 적용하여 웹 로그 데이터의 희소성 문제를 해결하면서 대용량 웹 데이터로부터 사용자에게 꼭 필요하고 유용한 정보를 추천할 수 있는 동적 웹 정보 예측 시스템을 설계하고 구현한다.

근전도 패턴인식을 위한 혼합형 LVQ 학습 알고리즘 (The Hybrid LVQ Learning Algorithm for EMG Pattern Recognition)

  • 이용구;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.113-121
    • /
    • 2005
  • 본 논문에서는 근전도 패턴인식을 수행하기 위한 혼합 LVQ 학습 알고리즘을 설계하였다. 제안된 혼합 LVQ 학습 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, LVQ 출력뉴런의 부류지정을 위하여 out-star학습법을 사용하는 변형된 C.p Net.이다. 제안된 C.p. Net.의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 클래스 층의 뉴런에 의해 종속 클래스로 분류하고, C.p. Net.의 종속 클래스 층과 클래스 층 사이의 연결강도는 분류된 종속 글래스를 클래스로 지정하는 학습을 하게 된다 근전도 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식 보다 우수한 분류성공률을 확인하였다.

  • PDF

얼굴 인식의 성능 향상을 위한 혼합형 신경회로망 연구 (A study of hybrid neural network to improve performance of face recognition)

  • 정성부;김주웅
    • 한국정보통신학회논문지
    • /
    • 제14권12호
    • /
    • pp.2622-2627
    • /
    • 2010
  • 24시간 무인 감시 시스템에서 정확한 얼굴 인식은 절대적으로 필요한 요소이다. 그러나 얼굴 인식은 얼굴 영상의 왜곡, 조명, 얼굴의 크기, 얼굴 표정, 배경 영상 등의 변화로 인해 많은 제약이 있다. 본 연구에서는 얼굴 인식의 성능 향상을 위하여 혼합형 신경회로망을 제안한다. 제안한 방식은 신경회로망의 비지도학습 방식인 SOM과 LVQ 알고리즘을 이용하여 구성한다. 제안한 방식의 유용성을 확인하기 위하여 고유얼굴 방식, 은닉 마코프 모델 방식, 다층 신경회로망 방식과 비교한다.

Self-Organizing Map for Blind Channel Equalization

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.609-617
    • /
    • 2010
  • This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.

대용량 데이터 처리를 위한 하이브리드형 클러스터링 기법 (A Hybrid Clustering Technique for Processing Large Data)

  • 김만선;이상용
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.33-40
    • /
    • 2003
  • 데이터 마이닝은 지식발견 과정에서 중요한 역할을 수행하며, 여러 데이터 마이닝의 알고리즘들은 특정의 목적을 위하여 선택될 수 있다. 대부분의 전통적인 계층적 클러스터링 방법은 적은 양의 데이터 집합을 처리하는데 적합하여 제한된 리소스와 부족한 효율성으로 인하여 대용량의 데이터 집합을 다루기가 곤란하다. 본 연구에서는 대용량의 데이터에 적용되어 알려지지 않은 패턴을 발견할 수 있는 하이브리드형 신경망 클러스터링 기법의 PPC(Pre-Post Clustrering) 기법을 제안한다. PPC 기법은 인공지능적 방법인 자기조직화지도(SOM)와 통계적 방법인 계층적 클러스터링을 결합하여 두 과정에서는 군집의 내부적 특징을 나타내는 응집거리와 군집간의 외부적 거리를 나타내는 인접거리에 따라 유사도를 측정한다. 최종적으로 PPC 기법은 측정된 유사도를 이용하여 대용량 데이터 집합을 군집화한다. PPC 기법은 UCI Repository 데이터를 이용하여 실험해 본 결과, 다른 클러스터링 기법들 보다 우수한 응집도를 보였다.