Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.
정보 기술 분야의 지능화 요구는 매우 빠르게 증가하고 있다. 특히 대량의 데이터로부터 지식을 찾아내어 최적의 의사결정을 해야하는 KDD(Knowledge Discovery in Database)분야에서는 그 요구가 더욱 더 크게 된다. 지능화된 의사결정을 위해서는 대용량 지식 베이스(Knowledge Base)의 효율적인 관리가 무엇보다도 중요하다. 본 논문에서는 이러한 지식 베이스로부터 의사결정 관리에 필요한 지식을 얻기 위해 효율적으로 지식 베이스를 검색하고 갱신하는 관리 방법을 위해 자율학습 신경망인 자기조직화 지도에 확률적 분포 이론을 결합한 하이브리드(Hybrid) SOM을 제안한다. 제안 방법을 이용한 효율적 지식 베이스의 관리를 시뮬레이션 실험을 통하여 수행하였다. 실험을 통해 본 논문에서 제안하는 Hybrid SOM이 지식 베이스 관리에 효율적인 성능을 나타냄이 증명되었다.
최근, 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 인터넷 쇼핑몰등을 대상으로 활발히 진행되고 있다. 그 중 SOM(Self-Organizing Feature Maps)을 이용한 동적 웹 정보 추천 기법은 빠른 수행 속도와 간편하게 사용할 수 있는 장점이 존재하나, 모형에 대한 설명력 부족 및 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 단점이 존재한다. 본 논문에서는 이러한 단점인 모형에 대한 설명력 부족을 베이지안 추론 기법으로 해결하며, 하이브리드 SOM을 이용하여 최종적으로 구축된 모형에서 출력층의 각 노드가 한 개의 가중치 값들로 고정되는 것이 아니라 가중치가 속하게 되는 분포가 결정되도록 한다. 이러한 하이브리드 SOM을 이용하여 동적 웹 정보 추천 기법을 설계하고 구현하여 기존의 웹 정보 추천 기법과 성능 비교를 수행한 결과, 제안된 기법의 우수함이 입증되었다.
본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.
본 논문에서는 여러 환경 변화에 민감한 특성을 가지고 있는 얼굴 인식의 성능 향상을 위해 혼합형 신경회로망 방식을 제안한다. 제안한 방식은 SOM과 LVQ를 이용하여 얼굴 인식의 성능을 향상시킨다. 제안한 방식의 유용성을 확인하기 위하여 ORL의 얼굴 영상을 이용하여 시뮬레이션을 수행하였다. 시뮬레이션 결과 제안한 방식이 고유얼굴 방식이나 은닉 마코프 모델 방식, 다층 신경회로망 방식보다 우수함을 확인하였다.
최근, 인터넷 쇼핑몰과 같은 웹 사이트를 대상으로 각 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 활발히 진행되고 있다. 사용자 프로파일과 명시적 피드백에 의존하는 대부분의 웹 정보 추천 시스템의 경우 사용자의 다양하고 정확한 정보를 필요로 하지만 실세계의 문제에 있어 이러한 연관 정보를 얻기란 쉽지 않다. 본 논문에서는 사용자의 명시적 피드백과 프로파일에 의존하지 않는 웹 정보 서비스를 위한 정보 예측 기법을 제안한다. 이를 위해 앙상블 Support Vector Machine과 하이브리드 SOM을 설계하고 적용하여 웹 로그 데이터의 희소성 문제를 해결하면서 대용량 웹 데이터로부터 사용자에게 꼭 필요하고 유용한 정보를 추천할 수 있는 동적 웹 정보 예측 시스템을 설계하고 구현한다.
본 논문에서는 근전도 패턴인식을 수행하기 위한 혼합 LVQ 학습 알고리즘을 설계하였다. 제안된 혼합 LVQ 학습 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, LVQ 출력뉴런의 부류지정을 위하여 out-star학습법을 사용하는 변형된 C.p Net.이다. 제안된 C.p. Net.의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 클래스 층의 뉴런에 의해 종속 클래스로 분류하고, C.p. Net.의 종속 클래스 층과 클래스 층 사이의 연결강도는 분류된 종속 글래스를 클래스로 지정하는 학습을 하게 된다 근전도 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식 보다 우수한 분류성공률을 확인하였다.
24시간 무인 감시 시스템에서 정확한 얼굴 인식은 절대적으로 필요한 요소이다. 그러나 얼굴 인식은 얼굴 영상의 왜곡, 조명, 얼굴의 크기, 얼굴 표정, 배경 영상 등의 변화로 인해 많은 제약이 있다. 본 연구에서는 얼굴 인식의 성능 향상을 위하여 혼합형 신경회로망을 제안한다. 제안한 방식은 신경회로망의 비지도학습 방식인 SOM과 LVQ 알고리즘을 이용하여 구성한다. 제안한 방식의 유용성을 확인하기 위하여 고유얼굴 방식, 은닉 마코프 모델 방식, 다층 신경회로망 방식과 비교한다.
Journal of information and communication convergence engineering
/
제8권6호
/
pp.609-617
/
2010
This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.
데이터 마이닝은 지식발견 과정에서 중요한 역할을 수행하며, 여러 데이터 마이닝의 알고리즘들은 특정의 목적을 위하여 선택될 수 있다. 대부분의 전통적인 계층적 클러스터링 방법은 적은 양의 데이터 집합을 처리하는데 적합하여 제한된 리소스와 부족한 효율성으로 인하여 대용량의 데이터 집합을 다루기가 곤란하다. 본 연구에서는 대용량의 데이터에 적용되어 알려지지 않은 패턴을 발견할 수 있는 하이브리드형 신경망 클러스터링 기법의 PPC(Pre-Post Clustrering) 기법을 제안한다. PPC 기법은 인공지능적 방법인 자기조직화지도(SOM)와 통계적 방법인 계층적 클러스터링을 결합하여 두 과정에서는 군집의 내부적 특징을 나타내는 응집거리와 군집간의 외부적 거리를 나타내는 인접거리에 따라 유사도를 측정한다. 최종적으로 PPC 기법은 측정된 유사도를 이용하여 대용량 데이터 집합을 군집화한다. PPC 기법은 UCI Repository 데이터를 이용하여 실험해 본 결과, 다른 클러스터링 기법들 보다 우수한 응집도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.