• Title/Summary/Keyword: Hybrid Manufacturing System

Search Result 185, Processing Time 0.022 seconds

Application of Intelligent Technique for the Efficient Operation of the Flexible Manufacturing System (유연생산시스템의 효율적 운용을 위한 지능적 기법의 적용에 관한 연구)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.1-15
    • /
    • 1999
  • This research involves the development and evaluation of a work flow control model for a type of flexible manufacturing system(FMS) called a flexible flow line(FFL). The control model can be considered as a kind of hybrid intelligent model in that it utilizes both computer simulation and neural network technique. Training data sets were obtained using computer simulation of typical FFL states. And these data sets were used to train the neural network model. The model can easily incorporate particular aspects of a specific FFL such as limited buffer capacity and dispatching rules used. It also dynamically adapts to system uncertainty caused by such factors as machine breakdowns. Performance of the control model is shown to be superior to the random releasing method and the Minimal Part Set(MPS) heuristic in terms of machine utilization and work-in-process inventory level.

  • PDF

Automatic Process Planning by Parsing the Parameters of Standard Features (표준형상 매개변수 추출을 이용한 자동공정계획)

  • 신동목
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2003
  • This paper presents an approach to automate process planning of press dies for manufacturing of car bodies. Considering that the press-dies used at the same press operations regardless of the panels they produce or the car models of which they produce panels have similar shapes except for the forming part of the dies, general approaches to recognize manufacturing features from CAD models are not necessary. Therefore, a hybrid approach is proposed combining feature-based design and feature-extraction approaches. The proposed method recognizes features by parsing the parameters extracted from CAD models and finds proper operations by querying the database by the recognized features. An internet-based process planning system is developed to demonstrate the proposed approach and to suggest a new paradigm of process planning system that utilizes an internet access to the CAD system.

Influence of different universal adhesives on the repair performance of hybrid CAD-CAM materials

  • Demirel, Gulbike;Baltacioglu, Ismail Hakki
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.3
    • /
    • pp.23.1-23.9
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the microshear bond strength (${\mu}SBS$) of different universal adhesive systems applied to hybrid computer-aided design/computer-aided manufacturing (CAD-CAM) restorative materials repaired with a composite resin. Materials and Methods: Four types of CAD-CAM hybrid block materials-Lava Ultimate (LA), Vita Enamic (VE), CeraSmart (CS), and Shofu Block HC (SH)-were used in this study, in combination with the following four adhesive protocols: 1) control: porcelain primer + total etch adhesive (CO), 2) Single Bond Universal (SB), 3) All Bond Universal (AB), and 4) Clearfil Universal Bond (CU). The ${\mu}SBS$ of the composite resin (Clearfil Majesty Esthetic) was measured and the data were analyzed using two-way analysis of variance and the Tukey test, with the level of significance set at p < 0.05. Results: The CAD-CAM block type and block-adhesive combination had significant effects on the bond strength values (p < 0.05). Significant differences were found between the following pairs of groups: VE/CO and VE/AB, CS/CO and CS/AB, VE/CU and CS/CU, and VE/AB and CS/AB (p < 0.05). Conclusions: The ${\mu}SBS$ values were affected by hybrid block type. All tested universal adhesive treatments can be used as an alternative to the control treatment for repair, except the AB system on VE blocks (the VE/AB group). The ${\mu}SBS$ values showed variation across different adhesive treatments on different hybrid CAD-CAM block types.

A 48-month clinical performance of hybrid ceramic fragment restorations manufactured in CAD/CAM in non-carious cervical lesions: case report

  • Michael Willian Favoreto;Gabriel David Cochinski;Eveline Claudia Martini;Thalita de Paris Matos;Matheus Coelho Bandeca;Alessandro Dourado Loguercio
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.3
    • /
    • pp.32.1-32.12
    • /
    • 2024
  • From the restorative perspective, various methods are available to prevent the progression of non-carious cervical lesions. Direct, semi-direct, and indirect composite resin techniques and indirect ceramic restorations are commonly recommended. In this context, semi-direct and indirect restoration approaches are increasingly favored, particularly as digital dentistry becomes more prevalent. To illustrate this, we present a case report demonstrating the efficacy of hybrid ceramic fragments fabricated using computer-aided design (CAD)/computer-aided manufacturing (CAM) technology and cemented with resin cement in treating non-carious cervical lesions over a 48-month follow-up period. A 24-year-old male patient sought treatment for aesthetic concerns and dentin hypersensitivity in the cervical region of the lower premolar teeth. Clinical examination confirmed the presence of two non-carious cervical lesions in the buccal region of teeth #44 and #45. The treatment plan involved indirect restoration using CAD/CAM-fabricated hybrid ceramic fragments as a restorative material. After 48 months, the hybrid ceramic material exhibited excellent adaptation and durability provided by the CAD/CAM system. This case underscores the effectiveness of hybrid ceramic fragments in restoring non-carious cervical lesions, highlighting their long-term stability and clinical success.

Scheme of P2P and P2P-based Collaborative Machine (P2P 개요 및 P2P-based Collaborative Machine의 Scheme)

  • Kim D. H.;Song J. Y.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.477-482
    • /
    • 2005
  • Recently, client computing trend has been changed from server oriented information application to network based P2P(Peer to Peer) services. The conventional client/server method has the merit of accessing abundant information, on the other side P2P has the merit of synchronized community support and information exchange. P2P has four meaning of point to point, peer to peer, person to person and path to profitability. In manufacturing system field, the second meaning is interested. P2P is classified to three type such as conventional client/server, hybrid P2P and pure P2P. The third is really peer to peer concept. The related technologies with P2P are P2P searching, XML, cooperation, IPv6, computing sharing and P2P communication. This paper describes the scheme of P2P and related contents. And through the P2P based technology, a P2P-based collaborative machine and a vertical portal machine are introduced in this paper. The scheme of the machines mentioned above is suggested for cooperation in manufacturing system and u-Manufacturing.

  • PDF

Reference Information Batch Application Model for Improving the Efficiency of MES (MES 효율 향상을 위한 참조정보 일괄 적용 모델)

  • Park, Sang-Hyock;Park, Koo-Rack;Kim, Dong-Hyun;Chung, Koung-Rock
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.71-79
    • /
    • 2021
  • In the manufacturing industry, there is a transition to multi-item production for reinforcement of competitiveness. Therefore, the hybrid manufacturing technology is increasing. Especially, many efforts in production quality improvement are made through the adoption of the manufacturing execution system and ERP, so it is necessary to operate MES for prompt and effective management. MES should improve ineffective parts in production activities while managing all stages related to production of products. If there is change in the process, the changed items should be reflected to the system. However, most manufacturing execution systems are operated passively and repetitively by system administrators. This study presents a model that system administrators can comprehensively apply reference information about production related requirements on specific line's equipment to the same equipment of other lines. The flexible response for application to production lines is possible thanks to the division of blanket application and selective application of reference information through proposed model.

MODELING AND OPTIMIZATION OF THE AIR- AND GAS-SUPPLYING NETWORK OF A CHEMICAL PLANT

  • Han, In-Su;Han, Chong-Hun;Chung, Chang-Bock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.377-382
    • /
    • 2004
  • This paper presents a novel optimization method for the air- and gas-supplying network comprised of several air compression systems and air and gas streams in an industrial chemical plant. The optimization is based on the hybrid model developed by Han and $Han^1$ for predicting the power consumption of a compression system. A constrained optimization problem was formulated to minimize the total electric power consumption of all the compression systems in the air- and gas-supplying network under various operating constraints and was solved using a successive quadratic optimization algorithm. The optimization approach was applied to an industrial terephthalic acid manufacturing plant to achieve about 10% reduction in the total electric power consumption under varying ambient conditions.

  • PDF

Experimental Study of New Welding Assembly Technology Applied with Mixed-Model Production Method (혼류생산 방식을 적용한 신개념 용접조립 기술 연구)

  • Park, Dong Hwan;Gu, Ja Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • Mixed-model production lines are often used in manufacturing systems. In production lines, different product types are simultaneously manufactured by processing small batches. This paper describes a new welding assembly technology involving the development of experimental models for a mixed-model production line in an automobile company. Due to the extensive number of models, the design of a welding assembly system is complicated. Performance evaluation is an important phase in the design of welding assembly lines in a mixed-model production environment. In this study, a new welding assembly technology for a mixed-model production method was used to weld the package tray and dash panel of a vehicle.

Characterization of a Loess Module for Manufacturing Loess Red Ginseng

  • Kim, Il-Chool;Yang, Jung-Hwan;Hur, Sang-Sun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.282-287
    • /
    • 2010
  • An optimized manufacturing process was developed for the production of high-quality loess red ginseng using a hybrid process in which loess (yellow earth) was incorporated into the conventional ginseng manufacturing process system. We designed conventional ginseng processing facilities and prepared the loess module by baking loess that contained 42% water at $860^{\circ}C$ for 8 h. The loess module showed excellent performance in deodorization and humidity control. The optimum steaming temperature at which maximum expansion of starch organisms occurred was 90 to $98^{\circ}C$.

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.