• Title/Summary/Keyword: Hybrid Manipulator

Search Result 73, Processing Time 0.019 seconds

Multi-functional Automated Cultivation for House Melon;Development of Tele-robotic System (시설멜론용 다기능 재배생력화 시스템;원격 로봇작업 시스템 개발)

  • Im, D.H.;Kim, S.C.;Cho, S.I.;Chung, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.186-195
    • /
    • 2008
  • In this paper, a prototype tele-operative system with a mobile base was developed in order to automate cultivation of house melon. A man-machine interactive hybrid decision-making system via tele-operative task interface was proposed to overcome limitations of computer image recognition. Identifying house melon including position data from the field image was critical to automate cultivation. And it was not simple especially when melon is covered partly by leaves and stems. The developed system was composed of 5 major modules: (a) main remote monitoring and task control module, (b) wireless remote image acquisition and data transmission module, (c) three-wheel mobile base mounted with a 4 dof articulated type robot manipulator (d) exchangeable modular type end tools, and (e) melon storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. Once task was selected from the task control and monitoring module, the analog signal of the color image of the field was captured and transmitted to the host computer using R.F. module by wireless. A sequence of algorithms to identify location and size of a melon was performed based on the local image processing. Laboratory experiment showed the developed prototype system showed the practical feasibility of automating various cultivating tasks of house melon.

A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation (미세 조작을 위한 압전 구동 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

Dimensional synthesis of an Inspection Robot for SG tube-sheet

  • Kuan Zhang;Jizhuang Fan;Tian Xu;Yubin Liu;Zhenming Xing;Biying Xu;Jie Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2718-2731
    • /
    • 2024
  • To ensure the operational safety of nuclear power plants, we present a Quadruped Inspection Robot that can be used for many types of steam generators. Since the Inspection Robot relies on the Holding Modules to grip the tube-sheet, it can be regarded as a hybrid robot with variable configurations, switching between 4-RRR-RR, 3-RRR-RR, and two types of 2-RRR-RR, and the variable configurations bring a great challenge to dimensional synthesis. In this paper, the kinematic model of the Inspection Robot in multiple configurations is established, and the analytical solution is given. The workspace mapping is analyzed by the solution-space, and the workspace of multiple configurations is decomposed into the workspace of 2-RRR to reduce the analysis complexity, and the workspace calculation is simplified by using the envelope rings. The optimization problem of the manipulator is transformed into the calculation of the shortest contraction length of the swing leg. The switching performance of the Inspection Robot is evaluated by stride-length, turning-angle, and workspace overlap-ratio. The performance indexes are classified and transformed based on the proportions and variation trends of dimensional parameters to reduce the number of optimization objective functions, and Pareto optimal solutions are obtained using an intelligent optimization algorithm.