• Title/Summary/Keyword: Hybrid MAC Protocol

Search Result 38, Processing Time 0.022 seconds

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

Hybrid MAC Protocol Design for an Underwater Acoustic Network (수중음향통신망을 위한 하이브리드 MAC 프로토콜 설계)

  • Park, Jong-Won;Ko, Hak-Lim;Cho, A-Ra;Yun, Chang-Ho;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2088-2096
    • /
    • 2009
  • This paper deals with hybrid MAC protocol design for underwater acoustic networks. The proposed MAC protocol has the cluster structure with a master node and slave nodes, and the hybrid network structure that combines a contention free period based on TDMA(Time Division Multiple Access) with a contention period. The suggested MAC protocol has a beacon packet for supervising network, a guard period between time slots for packet collision, time tag for estimation of propagation delay with a master node, the time synchronization of nodes, entering and leaving of network, and the communication method among nodes. In this paper, we adapt the proposed hybrid MAC protocol to AUV network, that is the representative mobile device of underwater acoustic network, and verify this protocol is applicable in real underwater acoustic network environment.

A Proposal Mac Protocol for Integration of Hybrid Wireless Sensor Networks

  • Christine, Niyizamwiyitira;Jeong, Seung-heui;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.330-333
    • /
    • 2009
  • WSNs is evolving different kinds of networks depending on different circumstances, among those we have HWSNs (Hybrid Wireless Sensor Networks) which invokes sensor nodes mobility. In hybrid wireless sensor networks (HWSNs), reducing energy consumption of resource constrained and adaptability to the sensors nodes motion are the crucial problems; to overcome this we need a scalable MAC protocol. Many MAC protocols have been proposed by different researchers, but in this paper we propose LMAC because it outperforms S-MAC, T-MAC and D-MAC protocols comparing to its improvement of energy efficiency and mobile adaptability.

  • PDF

A Priority-based Time Slot Allocation Protocol for Hybrid MAC in WSNs (WSN에서 하이브리드 MAC을 위한 우선순위기반 타임 슬롯 할당 프로토콜)

  • Nam, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1435-1440
    • /
    • 2014
  • Nodes in WSNs must operate under limited energy resource. Controlling access to the channel in WSNs plays a key role in determining channel utilization and energy consumption. This paper introduces a priority-based time slot allocation protocol for hybrid TDMA/CSMA MAC in WSNs. This protocol combines both TDMA and CSMA techniques while introducing prioritization by (m,k)-firm constraint. The performance of this protocol is obtained through simulations for various number of nodes and show significant improvements in delay and packet delivery ratio compared to S-MAC.

A Performance Analysis of DPA(Dynamic Priority Assignment) MAC Protocol for traffic QoS Improvement on HFC-CATV Network (HFC-CATV 망에서 트래픽 QoS 향상을 위한 DAP MAC 프로토콜 성능분석)

  • Lee, Su-Youn
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • This paper proposes DPA(Dynamic Priority Assignment) MAC protocol to improve the traffic QoS on the HFC-CATV(Hybrid Fiber Coax CAble TeleVision) network. In results, DPA MAC protocol is the best performance compare with to IEEE 802.14a MAC in mean request delay, mean access delay. Also, the paper prove a reliability of proposed protocol through comparison between performance analysis and simulation result of DAP MAC protocol.

Hybrid MAC Protocol for Improving Performance of IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜의 성능 향상을 위한 하이브리드 MAC 프로토콜)

  • Choi, Woo-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.2
    • /
    • pp.220-224
    • /
    • 2015
  • The DCF (Dcistributed Coordination Function) and PCF (Point Coordination Function) are the basic MAC (Medium Access Control) protocols of IEEE 802.11 wireless LANs. According to the DCF, each node performs the exponential backoff algorithm before the transmission of its data frame. Each node doubles the backoff waiting time before the transmission of its data frame whenever it detects the transmission collision with other nodes. Therefore, as the number of the active nodes having the data frames to transmit increases, the overall MAC performance of the DCF decreases. On the other hand, according to the PCF, each node is granted the transmission opportunity by which the PCF transmission is possible without the collision with other nodes. Therefore, as the number of the active nodes increases, the MAC performance of the PCF increases, In this paper, considering the tradeoff of MAC performance between the DCF and PCF, a hybrid MAC protocol is proposed to enhance the performance of IEEE 802.11 wireless LANs.

Design by Improved Energy Efficiency MAC Protocol based on Wireless Sensor Networks (무선 센서 네트워크 기반 에너지 효율성이 개선된 MAC 프로토콜 설계)

  • Lee, Cheol-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.439-444
    • /
    • 2017
  • Wireless sensor network technology is a rapidly growing technology of ubiquitous computing environment and application and research are being carried out in various fields. The sensor nodes constituting the wireless sensor network maintain the life cycle by using the battery in the distributed network environment, so energy efficiency is more important than QoS requirement. In MAC protocol of IEEE802.15.4, MAC protocol study adaptive to traffic and standardization work emphasizing reliability and efficiency in wireless sensor network environment are underway. but, Wireless sensor networks have the problem that the response speed of the sensor node drops as the energy efficiency decreases. In this paper, we designed the MAC protocol with improved energy efficiency of the whole network by analyzing the MAC protocol of the synchronous method and the hybrid method.

Hybrid MAC(HMAC) Protocol Considering Throughput in Wireless Sensor Networks (전송 효율을 고려한 무선센서 네트워크에서의 Hybrid MAC(HMAC) 프로토콜)

  • Lee, Jin-Young;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1394-1399
    • /
    • 2007
  • In this paper we propose a Hybrid MAC(HMAC) to enhance the transmission throughput in Wireless Sensor Networks(WSNs). In the proposed HMAC, sender nodes send transmission request packets to the receiver nodes using CSMA/CA MAC protocol. And the receiver node assigns slots according to the network topology and the amount of traffics using TDMA. Using HMAC we get the enhanced throughput by lowering the duplicated slot assignment.

A Hybrid MAC Protocol for Wireless Sensor Networks Enhancing Network Performance (무선센서 네트워크에서 네트워크 성능을 향상시키는 하이브리드 MAC 프로토콜)

  • Kim, Seong-Cheol;Kim, Dong-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In this paper we suggest a hybrid MAC protocol for wireless sensor networks (WSN) to enhance network performance. The proposed MAC scheme is specifically designed for wireless sensor networks which consist of lots nodes. The contributions of this paper are: First, the proposed scheduling algorithm is independent of network topology. Even though the BS node has lots of one hop node in dense mode network, all the time slots can be assigned fully without increasing frequencies. Second, BS one hop nodes can use more than one time slots if necessary, so total network performance is increased. We compare the network performance of the proposed scheme with previous one, HyMAC [1].

  • PDF

A TDMA-based MAC protocol in hybrid-vehicular communication systems for preventing a chain-reaction collision on a highway (하이브리드 차량 통신 시스템에서 연쇄 추돌 사고 방지를 위한 TDMA 기반 MAC 프로토콜)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.179-184
    • /
    • 2012
  • A car accident on a highway occurs a chain-reaction collision because of a vehicle's fast velocity. In order to prevent it, the accident vehicle should broadcast a safe message to its neighbors. If there are many neighbor nodes, a frame collision probability is high. To solve this, it was proposed for a system as a previous study to send a safe message without frame-collision using separating channels. However, the separation of multiple channels make feasibility low because of increasing hardware's development cost and complexity. In this paper, we proposes a TDMA-based MAC protocol using a single channel. As a result, we show the frame reception success rate of our protocol was almost the same as the previous protocol.